Trigonometry for Pros Repost

Geometry Level 4

Evaluete tan θ \tan \theta if :

  • A B C ABC is equilateral triangle of side a a

  • Circle is tangent to A C AC at point M M in the middle of A C AC and its radius is a 2 \frac a 2

  • Line B T BT is tangent to the circle

    Good Luck !


The answer is 0.1499738192744.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tomáš Hauser
Jul 2, 2018

Let's start with drawing a perpendicular lines from the line BT intersecting T and from CM intersecting M. Let's call the intersection of those two lines S, which is also a center of a circle, since we know that the circle is tangent to AC at point M. Then call the CBM angle alpha. Line BM is also a height of a triangle BCA and since the triangle is equilateral, we can say that alfa = 30 degrees, since it's half of an angle CBA, which is always 60 degrees like all the angles in equilateral triangles. We can now tell, that if we knew the angle TBM, which we can call beta, we could just substract alfa from it and it will give us theta - but for that we need to know lengths of at least two sides of a right triangle BTS. We can compute height BM of a triangle BCA by using pythagorean theorem. B M = a 2 ( a 2 ) 2 = a 2 a 2 4 = 3 4 × a 2 = a × 3 2 \left| {BM} \right| = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{4}} = \sqrt {\frac{3}{4} \times {a^2}} = a \times \frac{{\sqrt 3 }}{2} Now we can join |BM| + |MS| so we can get another side of a triangle BTS. B S = B M + M S = a × 3 2 + a 2 = a × 3 + a 2 = a × ( 3 + 1 ) 2 \left| {BS} \right| = \left| {BM} \right| + \left| {MS} \right| = \frac{{a \times \sqrt 3 }}{2} + \frac{a}{2} = \frac{{a \times \sqrt 3 + a}}{2} = \frac{{a \times \left( {\sqrt 3 + 1} \right)}}{2} After that we can just use a sin and subtract alfa from beta and compute a tan of it. tan ( θ ) = tan ( 30 arcsin ( 1 3 + 1 ) ) 0.149973819... \tan \left( \theta \right) = \tan \left( {30 - \arcsin \left( {\frac{1}{{\sqrt 3 + 1}}} \right)} \right) \sim 0.149973819... Now we can get rid of the arcsin from tan by few simple steps. tan ( a b ) = tan ( a ) tan ( b ) 1 + tan ( a ) × tan ( b ) 1 3 + 1 × 3 1 3 1 = 3 1 2 tan ( θ ) = tan ( 30 ) tan ( arcsin ( 3 2 1 2 ) ) 1 + tan ( 30 ) × tan ( arcsin ( 3 2 1 2 ) ) arcsin ( 3 2 1 2 ) = f tan ( θ ) = 1 3 tan ( f ) 1 + 1 3 × tan ( f ) = 1 3 tan ( f ) 3 3 + tan ( f ) 3 = 3 × ( 1 3 tan ( f ) ) 3 × ( 3 + tan ( f ) ) = 1 3 tan ( f ) 3 + tan ( f ) arcsin ( x ) = 2 × arctan ( x 1 + 1 x 2 ) f = arcsin ( 3 1 2 ) = 2 × arctan ( 3 1 2 1 + 1 ( 3 1 2 ) 2 ) = 2 × arctan ( 3 1 2 + 2 × 1 4 2 3 4 ) = 2 × arctan ( 3 1 2 + 2 × 1 2 3 2 ) f = 2 × arctan ( 3 1 2 + 2 × 3 2 ) g = 3 1 2 + 2 × 3 2 tan ( 2 x ) = 2 × tan ( x ) 1 tan 2 ( x ) f = tan ( 2 × arctan ( g ) ) = 2 × tan ( arctan ( g ) ) 1 tan 2 ( arctan ( g ) ) = 2 × g 1 g 2 = 3 1 1 + 3 2 1 ( 3 1 2 + 2 × 3 2 ) 2 g 2 = 4 2 × 3 4 + 8 × 3 2 + 2 × 3 = 2 3 2 + 3 + 4 × 3 2 1 g 2 = 2 + 3 + 4 × 3 2 2 + 3 2 + 3 + 4 × 3 2 = 2 3 + 4 × 3 2 2 + 3 + 4 × 3 2 tan ( f ) = 3 1 1 + 3 2 × 2 + 3 + 4 × 3 2 2 3 + 4 × 3 2 = 2 × 3 + 3 + 4 × 3 × 3 2 2 3 4 × 3 2 2 3 + 4 × 3 2 + 3 2 × 2 3 + 4 × 3 2 = 1 + 3 + 4 × 3 × 3 2 4 × 3 2 2 × 3 + 2 × 3 2 × ( 2 + 3 ) + 4 × 3 2 tan ( f ) = 1 + 3 + 4 × 3 × 3 2 4 × 3 2 2 × 3 + 2 × 3 2 × ( 2 + 3 ) + 4 × 3 2 = 1 + 3 + 4 × 3 2 × ( 3 1 ) 4 × 3 + 2 × 3 2 × ( 2 + 3 ) = 1 + 3 + 4 × 3 2 × ( 3 1 ) 2 × ( 2 × 3 + 3 2 × ( 2 + 3 ) ) tan ( θ ) = 1 3 × tan ( f ) 3 + tan ( f ) = 1 3 ( 1 + 3 + 4 3 3 2 4 3 2 2 3 + 2 3 2 ( 2 + 3 ) + 4 3 2 ) 3 + 1 + 3 + 4 3 3 2 4 3 2 2 3 + 2 3 2 ( 2 + 3 ) + 4 3 2 = 1 3 ( 1 + 3 + 4 3 2 ( 3 1 ) 2 ( 2 3 + 3 2 ( 2 + 3 ) ) ) 3 + ( 1 + 3 + 4 3 2 ( 3 1 ) 2 ( 2 3 + 3 2 ( 2 + 3 ) ) ) ϕ = 1 + 3 + 4 3 2 ( 3 1 ) 4 3 + 2 3 2 ( 2 + 3 ) tan ( θ ) = 1 3 × ϕ 3 + ϕ \begin{array}{l} \tan \left( {a - b} \right) = \frac{{\tan \left( a \right) - \tan \left( b \right)}}{{1 + \tan \left( a \right) \times \tan \left( b \right)}}\\ \frac{1}{{\sqrt 3 + 1}} \times \frac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} = \frac{{\sqrt 3 - 1}}{2}\\ \tan \left( \theta \right) = \frac{{\tan \left( {30} \right) - \tan \left( {\arcsin \left( {\frac{{\sqrt 3 }}{2} - \frac{1}{2}} \right)} \right)}}{{1 + \tan \left( {30} \right) \times \tan \left( {\arcsin \left( {\frac{{\sqrt 3 }}{2} - \frac{1}{2}} \right)} \right)}}\\ \arcsin \left( {\frac{{\sqrt 3 }}{2} - \frac{1}{2}} \right) = f\\ \tan \left( \theta \right) = \frac{{\frac{1}{{\sqrt 3 }} - \tan \left( f \right)}}{{1 + \frac{1}{{\sqrt 3 }} \times \tan \left( f \right)}} = \frac{{\frac{{1 - \sqrt 3 \tan \left( f \right)}}{{\sqrt 3 }}}}{{\frac{{\sqrt 3 + \tan \left( f \right)}}{{\sqrt 3 }}}} = \frac{{\sqrt 3 \times \left( {1 - \sqrt 3 \tan \left( f \right)} \right)}}{{\sqrt 3 \times \left( {\sqrt 3 + \tan \left( f \right)} \right)}} = \frac{{1 - \sqrt 3 \tan \left( f \right)}}{{\sqrt 3 + \tan \left( f \right)}}\\ \arcsin \left( x \right) = 2 \times \arctan \left( {\frac{x}{{1 + \sqrt {1 - {x^2}} }}} \right)\\ f = \arcsin \left( {\frac{{\sqrt 3 - 1}}{2}} \right) = 2 \times \arctan \left( {\frac{{\frac{{\sqrt 3 - 1}}{2}}}{{1 + \sqrt {1 - {{\left( {\frac{{\sqrt 3 - 1}}{2}} \right)}^2}} }}} \right) = 2 \times \arctan \left( {\frac{{\sqrt 3 - 1}}{{2 + 2 \times \sqrt {1 - \frac{{4 - 2\sqrt 3 }}{4}} }}} \right) = 2 \times \arctan \left( {\frac{{\sqrt 3 - 1}}{{2 + 2 \times \sqrt {1 - \frac{{2 - \sqrt 3 }}{2}} }}} \right)\\ f = 2 \times \arctan \left( {\frac{{\sqrt 3 - 1}}{{2 + 2 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}} \right)\\ g = \frac{{\sqrt 3 - 1}}{{2 + 2 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}\\ \tan \left( {2x} \right) = \frac{{2 \times \tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\\ f = \tan \left( {2 \times \arctan \left( g \right)} \right) = \frac{{2 \times \tan \left( {\arctan \left( g \right)} \right)}}{{1 - {{\tan }^2}\left( {\arctan \left( g \right)} \right)}} = \frac{{2 \times g}}{{1 - {g^2}}} = \frac{{\frac{{\sqrt 3 - 1}}{{1 + \sqrt {\frac{{\sqrt 3 }}{2}} }}}}{{1 - {{\left( {\frac{{\sqrt 3 - 1}}{{2 + 2 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}} \right)}^2}}}\\ {g^2} = \frac{{4 - 2 \times \sqrt 3 }}{{4 + 8 \times \sqrt {\frac{{\sqrt 3 }}{2}} + 2 \times \sqrt 3 }} = \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}\\ 1 - {g^2} = \frac{{2 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} - 2 + \sqrt 3 }}{{2 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }} = \frac{{2\sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}{{2 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}\\ \tan \left( f \right) = \frac{{\sqrt 3 - 1}}{{1 + \sqrt {\frac{{\sqrt 3 }}{2}} }} \times \frac{{2 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}{{2\sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }} = \frac{{2 \times \sqrt 3 + 3 + 4 \times \sqrt 3 \times \sqrt {\frac{{\sqrt 3 }}{2}} - 2 - \sqrt 3 - 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}{{2\sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} + \sqrt {\frac{{\sqrt 3 }}{2}} \times 2\sqrt 3 + 4 \times \frac{{\sqrt 3 }}{2}}} = \frac{{1 + \sqrt 3 + 4 \times \sqrt 3 \times \sqrt {\frac{{\sqrt 3 }}{2}} - 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}{{2 \times \sqrt 3 + 2 \times \sqrt {\frac{{\sqrt 3 }}{2}} \times \left( {2 + \sqrt 3 } \right) + 4 \times \frac{{\sqrt 3 }}{2}}}\\ \tan \left( f \right) = \frac{{1 + \sqrt 3 + 4 \times \sqrt 3 \times \sqrt {\frac{{\sqrt 3 }}{2}} - 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} }}{{2 \times \sqrt 3 + 2 \times \sqrt {\frac{{\sqrt 3 }}{2}} \times \left( {2 + \sqrt 3 } \right) + 4 \times \frac{{\sqrt 3 }}{2}}} = \frac{{1 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} \times \left( {\sqrt 3 - 1} \right)}}{{4 \times \sqrt 3 + 2 \times \sqrt {\frac{{\sqrt 3 }}{2}} \times \left( {2 + \sqrt 3 } \right)}} = \frac{{1 + \sqrt 3 + 4 \times \sqrt {\frac{{\sqrt 3 }}{2}} \times \left( {\sqrt 3 - 1} \right)}}{{2 \times \left( {2 \times \sqrt 3 + \sqrt {\frac{{\sqrt 3 }}{2}} \times \left( {2 + \sqrt 3 } \right)} \right)}}\\ \tan \left( \theta \right) = \frac{{1 - \sqrt 3 \times \tan \left( f \right)}}{{\sqrt 3 + \tan \left( f \right)}} = \frac{{1 - \sqrt 3 \left( {\frac{{1 + \sqrt 3 + 4\sqrt 3 \sqrt {\frac{{\sqrt 3 }}{2}} - 4\sqrt {\frac{{\sqrt 3 }}{2}} }}{{2\sqrt 3 + 2\sqrt {\frac{{\sqrt 3 }}{2}} \left( {2 + \sqrt 3 } \right) + 4\frac{{\sqrt 3 }}{2}}}} \right)}}{{\sqrt 3 + \frac{{1 + \sqrt 3 + 4\sqrt 3 \sqrt {\frac{{\sqrt 3 }}{2}} - 4\sqrt {\frac{{\sqrt 3 }}{2}} }}{{2\sqrt 3 + 2\sqrt {\frac{{\sqrt 3 }}{2}} \left( {2 + \sqrt 3 } \right) + 4\frac{{\sqrt 3 }}{2}}}}} = \frac{{1 - \sqrt 3 \left( {\frac{{1 + \sqrt 3 + 4\sqrt {\frac{{\sqrt 3 }}{2}} \left( {\sqrt 3 - 1} \right)}}{{2\left( {2\sqrt 3 + \sqrt {\frac{{\sqrt 3 }}{2}\left( {2 + \sqrt 3 } \right)} } \right)}}} \right)}}{{\sqrt 3 + \left( {\frac{{1 + \sqrt 3 + 4\sqrt {\frac{{\sqrt 3 }}{2}} \left( {\sqrt 3 - 1} \right)}}{{2\left( {2\sqrt 3 + \sqrt {\frac{{\sqrt 3 }}{2}\left( {2 + \sqrt 3 } \right)} } \right)}}} \right)}}\\ \phi = \frac{{1 + \sqrt 3 + 4\sqrt {\frac{{\sqrt 3 }}{2}} \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 3 + 2\sqrt {\frac{{\sqrt 3 }}{2}\left( {2 + \sqrt 3 } \right)} }}\\ \tan \left( \theta \right) = \frac{{1 - \sqrt 3 \times \phi }}{{\sqrt 3 + \phi }} \end{array}

My solution was slightly different in the end, as a sugestion you should find tan(beta) and do tan(30 - beta) because there is a formula for the difference of tangents, tan(a-b) = (tana - tanb)/(1+ tana * tanb)

Since STB is 90 degrees you can say tg(betha) = ST/BT

Relue Tamref - 2 years, 11 months ago

Log in to reply

Thanks! Look at it now. I have even found some weird formula for arcsin, which converts it to arctan and from that I even got rid of any trig functions and got a formula with just numbers.

Tomáš Hauser - 2 years, 11 months ago

I wondered why the problem didn't ask for better than a decimal solution, which is quite simple. I did the exact same thing as you. Then I tried to get a simple closed form, but I went a different direction from you. The best closed form I got it to was

6 + 3 + ( 8 6 3 ) 3 + 2 3 11 \frac{6+\sqrt{3}+(8-6\sqrt{3})\sqrt{3+2\sqrt{3}}}{11}

(sorry but I don't feel like entering in all of the steps)

Jeremy Galvagni - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...