Trigonometry Formulae - Part 4

Geometry Level 2

If tan ( α ) = 2 \tan (\alpha )=2 , then sin ( α ) + cos ( α ) 3 sin ( α ) 2 cos ( α ) = a b \dfrac{\sin (\alpha )+\cos (\alpha )}{3 \sin (\alpha )-2 \cos (\alpha )} = \dfrac ab , where a a and b b are coprime positive integers. Find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 20, 2019

Q = sin α + cos α 3 sin α 2 cos α Divide up and down by cos α = tan α + 1 3 tan α 2 Since tan α = 2 = 2 + 1 3 ( 2 ) 2 = 3 4 \begin{aligned} Q & = \frac {\sin \alpha + \cos \alpha}{3\sin \alpha - 2\cos \alpha} & \small \color{#3D99F6} \text{Divide up and down by }\cos \alpha \\ & = \frac {{\color{#3D99F6}\tan \alpha}+1} {3{\color{#3D99F6}\tan \alpha}-2} & \small \color{#3D99F6} \text{Since }\tan \alpha = 2 \\ & = \frac {{\color{#3D99F6}2}+1} {3{\color{#3D99F6}(2)}-2} \\ & = \frac 34 \end{aligned}

Therefore, a + b = 3 + 4 = 7 a+b = 3+4 = \boxed 7 .

@Alice Smith , you don't need to use \displaystyle for fractions, tan x \tan x , sin x \sin x and cos x \cos x . For fractions, just use \dfrac \pi 2 π 2 \dfrac \pi 2 . Similarly for \binom nk ( n k ) \binom nk , \dbinom nk ( n k ) \dbinom nk . \displaystyle is used for \int _0^\frac \pi 2, \sum _{k=0}^\infty and \ lim _{x \to infty} 0 π 2 , k = 0 , lim x \displaystyle \int_0^\frac \pi 2, \sum_{k=0}^\infty, \lim_{x \to \infty} , Without \displaystyle 0 π 2 , k = 0 , lim x \int _0^\frac \pi 2, \sum_{k=0}^\infty, \lim_{x \to \infty}

Chew-Seong Cheong - 2 years ago

Log in to reply

Thanks for mentioning that:)

Alice Smith - 2 years ago
Chris Lewis
May 20, 2019

Divide the numerator and denominator by cos α \cos \alpha (which, since tan α = 2 \tan \alpha =2 , is not zero) to leave

tan α + 1 3 tan α 2 = 3 4 \frac{\tan \alpha + 1}{3\tan \alpha - 2} = \frac{3}{4}

so a + b = 7 a+b=\boxed7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...