Trigonometry Formulae - Part 6

Geometry Level 3

In A B C \triangle ABC , if B = 3 0 B=30^\circ , what is the range of cos A sin C \cos A\sin C ?

[ 1 2 , 1 2 ] \left[-\frac{1}{2},\frac{1}{2}\right] [ 1 , 1 ] [-1,1] [ 3 4 , 1 4 ] \left[-\frac{3}{4},\frac{1}{4}\right] [ 1 4 , 3 4 ] \left[-\frac{1}{4},\frac{3}{4}\right]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 23, 2019

cos A sin C = cos A sin ( 15 0 A ) For B = 3 0 = cos A ( sin 15 0 cos A cos 15 0 sin A ) = 1 2 cos 2 A + 3 2 sin A cos A = 1 4 + 1 4 cos 2 A + 3 4 sin 2 A = 1 4 + 1 2 sin ( 2 A + 3 0 ) \begin{aligned} \cos A \color{#3D99F6}\sin C & = \cos A \color{#3D99F6} \sin (150^\circ - A) & \small \color{#3D99F6} \text{For }B = 30^\circ \\ & = \cos A (\sin 150^\circ \cos A - \cos 150^\circ \sin A) \\ & = \frac 12 \cos^2 A + \frac {\sqrt 3}2 \sin A \cos A \\ & = \frac 14 + \frac 14 \cos 2A + \frac {\sqrt 3}4 \sin 2A \\ & = \frac 14 + \frac 12 \sin (2A + 30^\circ) \end{aligned}

This implies that cos A sin C \cos A \sin C is minimum and maximum when sin ( 2 A + 3 0 ) \sin (2A+30^\circ) is minimum and maximum. For A ( 0 , 15 0 ) A \in (0^\circ, 150^\circ) ,

{ min ( cos A sin C ) = 1 4 + 1 2 ( 1 ) = 1 4 when A = 12 0 max ( cos A sin C ) = 1 4 + 1 2 ( 1 ) = 3 4 when A = 3 0 \begin{cases} \min (\cos A \sin C) = \dfrac 14 + \dfrac 12 (-1) = - \dfrac 14 & \text{when }A = 120^\circ \\ \max (\cos A \sin C) = \dfrac 14 + \dfrac 12 (1) = \dfrac 34 & \text{when }A = 30^\circ \end{cases}

Therefore, the range of cos A sin C \cos A \sin C is [ 1 4 , 3 4 ] \boxed{\left[-\dfrac 14, \dfrac 34 \right]} .

@Alice Smith , the \displaystyle are unnecessary. use \triangle \triangle , ^\circ ^\circ , and \angle \angle . Use \left[ \right] and the brackets will adjust themselves [ π 4 ] \left[ \dfrac \pi 4\right] . SImilarly for \left( \right), \left| \right|, \left \lfloor \right \rfloor ( π 4 ) , π 4 , π 4 \left( \dfrac \pi 4 \right), \left| \dfrac \pi 4 \right|, \left \lfloor \dfrac \pi 4 \right \rfloor .

Chew-Seong Cheong - 2 years ago
David Vreken
May 21, 2019

Since B = 30 ° \angle B = 30° , then by the angle sum of a triangle, C = 150 ° A C = 150° - A . Therefore, using some trigonometric identities,

cos A sin C \cos A \sin C

= cos A sin ( 150 ° A ) = \cos A \sin (150° - A)

= cos A ( sin 150 ° cos A sin A cos 150 ° ) = \cos A (\sin 150° \cos A - \sin A \cos 150°)

= sin 150 ° cos 2 A cos 150 ° sin A cos A = \sin 150° \cos^2 A - \cos 150° \sin A \cos A

= sin 150 ° cos 2 A 1 2 sin 150 ° cos 150 ° sin A cos A + 1 2 sin 150 ° = \sin 150° \cos^2 A - \frac{1}{2}\sin 150° - \cos 150° \sin A \cos A + \frac{1}{2} \sin 150°

= 1 2 ( sin 150 ° ( 2 cos 2 A 1 ) cos 150 ° ( 2 sin A cos A ) ) + 1 2 sin 150 ° = \frac{1}{2}(\sin 150° (2 \cos^2 A - 1) - \cos 150° (2 \sin A \cos A)) + \frac{1}{2} \sin 150°

= 1 2 ( sin 150 ° cos 2 A cos 150 ° sin 2 A ) + 1 2 sin 150 ° = \frac{1}{2}(\sin 150° \cos 2A - \cos 150° \sin 2A) + \frac{1}{2} \sin 150°

= 1 2 sin ( 150 ° 2 A ) + 1 2 sin 150 ° = \frac{1}{2}\sin (150° - 2A) + \frac{1}{2} \sin 150°

= 1 2 sin ( 150 ° 2 A ) + 1 4 = \frac{1}{2}\sin (150° - 2A) + \frac{1}{4}

Therefore, cos A sin C \cos A \sin C is equivalent to a sine curve with an amplitude of 1 2 \frac{1}{2} and shifted up 1 4 \frac{1}{4} , so its range is [ 1 4 , 3 4 ] [-\frac{1}{4}, \frac{3}{4}] .

CosASinC=CosA( 1 2 \dfrac{1}{2} CosA+ 3 2 \dfrac{√3}{2} SinA) = 1 4 \dfrac{1}{4} [1+2Sin(2A+α)], where Tanα= 1 3 \dfrac{1}{√3} . Since the range of Sin(2A+α) is [-1,1], therefore range of CosASinC is [- 1 4 \dfrac{1}{4} , 3 4 \dfrac{3}{4} ]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...