In △ A B C , if B = 3 0 ∘ , what is the range of cos A sin C ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Alice Smith , the \displaystyle are unnecessary. use \triangle △ , ^\circ ∘ , and \angle ∠ . Use \left[ \right] and the brackets will adjust themselves [ 4 π ] . SImilarly for \left( \right), \left| \right|, \left \lfloor \right \rfloor ( 4 π ) , ∣ ∣ ∣ 4 π ∣ ∣ ∣ , ⌊ 4 π ⌋ .
Since ∠ B = 3 0 ° , then by the angle sum of a triangle, C = 1 5 0 ° − A . Therefore, using some trigonometric identities,
cos A sin C
= cos A sin ( 1 5 0 ° − A )
= cos A ( sin 1 5 0 ° cos A − sin A cos 1 5 0 ° )
= sin 1 5 0 ° cos 2 A − cos 1 5 0 ° sin A cos A
= sin 1 5 0 ° cos 2 A − 2 1 sin 1 5 0 ° − cos 1 5 0 ° sin A cos A + 2 1 sin 1 5 0 °
= 2 1 ( sin 1 5 0 ° ( 2 cos 2 A − 1 ) − cos 1 5 0 ° ( 2 sin A cos A ) ) + 2 1 sin 1 5 0 °
= 2 1 ( sin 1 5 0 ° cos 2 A − cos 1 5 0 ° sin 2 A ) + 2 1 sin 1 5 0 °
= 2 1 sin ( 1 5 0 ° − 2 A ) + 2 1 sin 1 5 0 °
= 2 1 sin ( 1 5 0 ° − 2 A ) + 4 1
Therefore, cos A sin C is equivalent to a sine curve with an amplitude of 2 1 and shifted up 4 1 , so its range is [ − 4 1 , 4 3 ] .
CosASinC=CosA( 2 1 CosA+ 2 √ 3 SinA) = 4 1 [1+2Sin(2A+α)], where Tanα= √ 3 1 . Since the range of Sin(2A+α) is [-1,1], therefore range of CosASinC is [- 4 1 , 4 3 ]
Problem Loading...
Note Loading...
Set Loading...
cos A sin C = cos A sin ( 1 5 0 ∘ − A ) = cos A ( sin 1 5 0 ∘ cos A − cos 1 5 0 ∘ sin A ) = 2 1 cos 2 A + 2 3 sin A cos A = 4 1 + 4 1 cos 2 A + 4 3 sin 2 A = 4 1 + 2 1 sin ( 2 A + 3 0 ∘ ) For B = 3 0 ∘
This implies that cos A sin C is minimum and maximum when sin ( 2 A + 3 0 ∘ ) is minimum and maximum. For A ∈ ( 0 ∘ , 1 5 0 ∘ ) ,
⎩ ⎪ ⎨ ⎪ ⎧ min ( cos A sin C ) = 4 1 + 2 1 ( − 1 ) = − 4 1 max ( cos A sin C ) = 4 1 + 2 1 ( 1 ) = 4 3 when A = 1 2 0 ∘ when A = 3 0 ∘
Therefore, the range of cos A sin C is [ − 4 1 , 4 3 ] .