Trigonometry Formulae - Part 7

Algebra Level pending

In A B C \displaystyle △ABC , C > 90 ° \displaystyle C>90° , E = s i n C \displaystyle E=sinC , F = s i n A + s i n B \displaystyle F=sinA+sinB , G = c o s A + c o s B \displaystyle G=cosA+cosB .

What is the relationship between E \displaystyle E , F \displaystyle F , G \displaystyle G ?

F > G > E \displaystyle F>G>E E > F > G \displaystyle E>F>G G > F > E \displaystyle G>F>E F > E > G \displaystyle F>E>G

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since C> π 2 \dfrac{π}{2} , therefore A+B< π 2 \dfrac{π}{2} . Hence A + B 2 \dfrac{A+B}{2} < π 4 \dfrac{π}{4} and tan( A + B 2 \dfrac{A+B}{2} )<1. Hence sin( A + B 2 \dfrac{A+B}{2} )<cos( A + B 2 \dfrac{A+B}{2} ), or sin( C 2 \dfrac{C}{2} )<cos( C 2 \dfrac{C}{2} ). Also cos( A + B 2 \dfrac{A+B}{2} )<cos( A B 2 \dfrac{A-B}{2} ). This implies G>F>E

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...