Given the following trigonometry equation:
cot 4 1 1 . 2 5 ∘ + cot 4 2 2 . 5 ∘ + cot 4 3 3 . 7 5 ∘ + tan 4 1 1 . 2 5 ∘ + tan 4 2 2 . 5 ∘ + tan 4 3 3 . 7 5 ∘ = N
Find the value of N where N is a positive integer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Typo: third last line: = 1 6 ( 3 4 ) + 1 6 ( ( cot ( 2 2 . 5 ∘ ) − tan ( 2 2 . 5 ∘ ) ) 2 + 2 ) + 5 8 2 ,
an extra right bracket before "squared"
Problem Loading...
Note Loading...
Set Loading...
We first prove the trigonometric identity: cot x − tan x = 2 cot ( 2 x )
cot x − tan x = = = = = sin x cos x − cos x sin x sin x cos x cos 2 x − sin 2 x 2 2 sin x cos x cos 2 x − sin 2 x 2 sin ( 2 x ) cos ( 2 x ) 2 cot ( 2 x )
By Binomial expansion
( a − b ) 4 = = = = a 4 − 4 a 3 b + 6 a 2 b 2 − 4 a b 3 + b 4 a 4 + b 4 − 4 a b ( a 2 + b 2 ) + 6 a 2 b 2 a 4 + b 4 − 4 a b ( ( a − b ) 2 + 2 a b ) + 6 a 2 b 2 a 4 + b 4 − 4 a b ( a − b ) 2 − 2 a 2 b 2
a 4 + b 4 = ( a − b ) 4 + 4 a b ( a − b ) 2 + 2 a 2 b 2
Let a = cot ( 1 1 . 2 5 ∘ ) , b = tan ( 1 1 . 2 5 ∘ ) ⇒ a − b = 2 cot ( 2 2 . 5 ∘ ) , a b = 1
⇒ cot 4 ( 1 1 . 2 5 ∘ ) + tan 4 ( 1 1 . 2 5 ∘ ) = 1 6 cot 4 ( 2 2 . 5 ∘ ) + 1 6 cot 2 ( 2 2 . 5 ) + 2
Similarly, let a = cot ( 2 2 . 5 ∘ ) , b = tan ( 2 2 . 5 ∘ )
⇒ cot 4 ( 2 2 . 5 ∘ ) + tan 4 ( 2 2 . 5 ∘ ) = = 1 6 cot 4 ( 4 5 ∘ ) + 1 6 cot 4 ( 4 5 ∘ ) + 2 1 6 + 1 6 + 2 = 3 4
Again, let a = cot ( 3 3 . 7 5 ∘ ) , b = tan ( 3 3 . 7 5 ∘ )
⇒ cot 4 ( 3 3 . 7 5 ∘ ) + tan 4 ( 3 3 . 7 5 ∘ ) = 1 6 cot 4 ( 6 7 . 5 ∘ ) + 1 6 cot 2 ( 6 7 . 5 ) + 2
Hence,
cot 4 ( 1 1 . 2 5 ∘ ) + tan 4 ( 1 1 . 2 5 ∘ ) + cot 4 ( 2 2 . 5 ∘ )
+ tan 4 ( 2 2 . 5 ∘ ) + cot 4 ( 3 3 . 7 5 ∘ ) + tan 4 ( 3 3 . 7 5 ∘ )
= ( 1 6 cot 4 ( 2 2 . 5 ∘ ) + 1 6 cot 2 ( 2 2 . 5 ) + 2 ) + 3 4 + ( 1 6 cot 4 ( 6 7 . 5 ∘ ) + 1 6 cot 2 ( 6 7 . 5 ) + 2 )
= 1 6 ( cot 4 ( 2 2 . 5 ∘ ) + cot 4 ( 6 7 . 5 ∘ ) ) + 1 6 ( cot 2 ( 2 2 . 5 ∘ ) + cot 2 ( 6 7 . 5 ∘ ) ) + 3 8
= 1 6 ( cot 4 ( 2 2 . 5 ∘ ) + cot 4 ( 2 2 . 5 ∘ ) ) + 1 6 ( cot 2 ( 2 2 . 5 ∘ ) + cot 2 ( 2 2 . 5 ∘ ) ) + 3 8
= 1 6 ( 3 4 ) + 1 6 ( ( cot ( 2 2 . 5 ∘ ) − tan ( 2 2 . 5 ∘ ) 2 + 2 ) + 5 8 2
= 1 6 ( ( 2 cot ( 4 5 ∘ ) ) 2 + 2 ) + 5 8 2
= 1 6 ( 2 2 + 2 ) + 5 8 2
= 6 7 8