Trigonometry Identity

Level pending

Given the following trigonometry equation:

cot 4 11.2 5 + cot 4 22. 5 + cot 4 33.7 5 + tan 4 11.2 5 + tan 4 22. 5 + tan 4 33.7 5 = N \displaystyle \cot^4 11.25^\circ + \cot^4 22.5^\circ + \cot^4 33.75^\circ + \tan^4 11.25^\circ + \tan^4 22.5^\circ + \tan^4 33.75^\circ = N

Find the value of N \displaystyle N where N \displaystyle N is a positive integer.


The answer is 678.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Jan 9, 2014

We first prove the trigonometric identity: cot x tan x = 2 cot ( 2 x ) \cot x - \tan x = 2 \cot (2x)

cot x tan x = cos x sin x sin x cos x = cos 2 x sin 2 x sin x cos x = 2 cos 2 x sin 2 x 2 sin x cos x = 2 cos ( 2 x ) sin ( 2 x ) = 2 cot ( 2 x ) \begin{aligned} \cot x - \tan x & = & \frac { \cos x}{\sin x } - \frac { \sin x}{\cos x } \\ & = & \frac {\cos^2 x - \sin^2 x }{\sin x \cos x } \\ & = & 2 \frac {\cos^2 x - \sin^2 x }{2 \sin x \cos x } \\ & = & 2 \frac {\cos (2x) }{\sin (2x)} \\ & = & 2 \cot (2x) \\ \end{aligned}

By Binomial expansion

( a b ) 4 = a 4 4 a 3 b + 6 a 2 b 2 4 a b 3 + b 4 = a 4 + b 4 4 a b ( a 2 + b 2 ) + 6 a 2 b 2 = a 4 + b 4 4 a b ( ( a b ) 2 + 2 a b ) + 6 a 2 b 2 = a 4 + b 4 4 a b ( a b ) 2 2 a 2 b 2 \begin{aligned} (a - b)^4 & = & a^4 - 4a^3 b + 6a^2 b^2 - 4ab^3 + b^4 \\ & = & a^4+b^4 - 4ab(a^2+b^2) + 6a^2 b^2 \\ & = & a^4+b^4 - 4ab \left ( (a-b)^2 + 2ab \right ) + 6a^2 b^2 \\ & = & a^4 + b^4 - 4ab(a-b)^2 - 2a^2 b^2 \\ \end{aligned}

a 4 + b 4 = ( a b ) 4 + 4 a b ( a b ) 2 + 2 a 2 b 2 \begin{aligned} a^4+b^4 & = &(a-b)^4 + 4ab(a-b)^2 + 2a^2 b^2 \end{aligned}

Let a = cot ( 11.2 5 ) , b = tan ( 11.2 5 ) a b = 2 cot ( 22. 5 ) , a b = 1 a = \cot (11.25^\circ), b = \tan (11.25^\circ) \Rightarrow a - b = 2\cot (22.5^\circ), ab = 1

cot 4 ( 11.2 5 ) + tan 4 ( 11.2 5 ) = 16 cot 4 ( 22. 5 ) + 16 cot 2 ( 22.5 ) + 2 \Rightarrow \cot^4 (11.25^\circ) + \tan^4 (11.25^\circ) = 16 \cot^4 (22.5^\circ) + 16 \cot^2 (22.5) + 2

Similarly, let a = cot ( 22. 5 ) , b = tan ( 22. 5 ) a = \cot (22.5^\circ), b = \tan (22.5^\circ)

cot 4 ( 22. 5 ) + tan 4 ( 22. 5 ) = 16 cot 4 ( 4 5 ) + 16 cot 4 ( 4 5 ) + 2 = 16 + 16 + 2 = 34 \begin{aligned} \Rightarrow \cot^4 (22.5^\circ) + \tan^4 (22.5^\circ) & = & 16 \cot^4 (45^\circ) + 16 \cot^4 (45^\circ) + 2 \\ & = & 16 + 16+2=34 \end{aligned}

Again, let a = cot ( 33.7 5 ) , b = tan ( 33.7 5 ) a = \cot (33.75^\circ), b = \tan (33.75^\circ)

cot 4 ( 33.7 5 ) + tan 4 ( 33.7 5 ) = 16 cot 4 ( 67. 5 ) + 16 cot 2 ( 67.5 ) + 2 \Rightarrow \cot^4 (33.75^\circ) + \tan^4 (33.75^\circ) = 16 \cot^4 (67.5^\circ) + 16 \cot^2 (67.5) + 2

Hence,

cot 4 ( 11.2 5 ) + tan 4 ( 11.2 5 ) + cot 4 ( 22. 5 ) \cot^4 (11.25^\circ) +\tan^4 (11.25^\circ) + \cot^4 (22.5^\circ)

+ tan 4 ( 22. 5 ) + cot 4 ( 33.7 5 ) + tan 4 ( 33.7 5 ) + \tan^4 (22.5^\circ) + \cot^4 (33.75^\circ) + \tan^4 (33.75^\circ)

= ( 16 cot 4 ( 22. 5 ) + 16 cot 2 ( 22.5 ) + 2 ) + 34 + ( 16 cot 4 ( 67. 5 ) + 16 cot 2 ( 67.5 ) + 2 ) = \left ( 16 \cot^4 (22.5^\circ) + 16 \cot^2 (22.5) + 2 \right ) + 34 + \left ( 16 \cot^4 (67.5^\circ) + 16 \cot^2 (67.5) + 2 \right )

= 16 ( cot 4 ( 22. 5 ) + cot 4 ( 67. 5 ) ) + 16 ( cot 2 ( 22. 5 ) + cot 2 ( 67. 5 ) ) + 38 = 16 \left ( \cot^4 (22.5^\circ) + \cot^4 (67.5^\circ) \right ) + 16 \left ( \cot^2 (22.5^\circ) + \cot^2 (67.5^\circ) \right ) + 38

= 16 ( cot 4 ( 22. 5 ) + cot 4 ( 22. 5 ) ) + 16 ( cot 2 ( 22. 5 ) + cot 2 ( 22. 5 ) ) + 38 = 16 \left ( \cot^4 (22.5^\circ) + \cot^4 (22.5^\circ) \right ) + 16 \left ( \cot^2 (22.5^\circ) + \cot^2 (22.5^\circ) \right ) + 38

= 16 ( 34 ) + 16 ( ( cot ( 22. 5 ) tan ( 22. 5 ) 2 + 2 ) + 582 = 16(34) + 16 \left ( (\cot (22.5^\circ) - \tan (22.5^\circ)^2 + 2 \right ) + 582

= 16 ( ( 2 cot ( 4 5 ) ) 2 + 2 ) + 582 = 16 \left ( (2 \cot (45^\circ) )^2 + 2 \right ) + 582

= 16 ( 2 2 + 2 ) + 582 = 16(2^2 + 2) + 582

= 678 = \boxed{678}

Typo: third last line: = 16 ( 34 ) + 16 ( ( cot ( 22. 5 ) tan ( 22. 5 ) ) 2 + 2 ) + 582 = 16(34) + 16 \left ( (\cot (22.5^\circ) - \tan (22.5^\circ) )^2 + 2 \right ) + 582 ,

an extra right bracket before "squared"

Pi Han Goh - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...