Trigonometry II

Geometry Level 3

α = ( 3 + tan ( 1 ) ) . ( ( 3 + tan ( 2 ) ) . . . ( ( 3 + tan ( 2 9 ) ) \displaystyle \alpha = (\sqrt{3} + \tan (1^\circ)).((\sqrt{3} +\tan(2^\circ))...((\sqrt{3}+\tan(29^\circ))

What Is The Last Three Digits of α \alpha ?

Details :

  • Is Product Tan 1 1^\circ Until 2 9 29^\circ

  • You Can Use A Calculator


The answer is 912.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dinesh Chavan
Apr 4, 2014

It is given that α = ( 3 + t a n ( 1 ) ) . ( 3 + t a n ( 2 ) ) . ( 3 + t a n ( 3 ) ) . . . . . . ( 3 + t a n ( 29 ) ) \alpha=(\sqrt{3}+tan(1)).(\sqrt{3}+tan(2)).(\sqrt{3}+tan(3))......(\sqrt{3}+tan(29)) Which can be written as α = ( 3 + t a n ( 1 ) ) . ( 3 + t a n ( 29 ) ) . ( 3 + t a n ( 2 ) ) . ( 3 + t a n ( 28 ) ) . . . . . . . ( 3 + t a n ( 14 ) ) . ( 3 + t a n ( 16 ) ) . ( 3 + t a n ( 15 ) ) \alpha=(\sqrt{3}+tan(1)).(\sqrt{3}+tan(29)).(\sqrt{3}+tan(2)).(\sqrt{3}+tan(28)).......(\sqrt{3}+tan(14)).(\sqrt{3}+tan(16)).(\sqrt{3}+tan(15))

Now,, notice that ( 3 + t a n ( 1 ) ) . ( 3 + t a n ( 29 ) ) = 3 + 3 ( t a n ( 1 ) + t a n ( 29 ) ) + t a n ( 1 ) . t a n ( 29 ) . . . . . . . . . . . ( 1 ) (\sqrt{3}+tan(1)).(\sqrt{3}+tan(29))=3+\sqrt{3}(tan(1)+tan(29))+tan(1).tan(29)...........(1)

Now we know from the formula that t a n ( 30 ) = t a n ( 1 ) + t a n ( 29 ) 1 t a n ( 1 ) t a n ( 29 ) tan(30)=\frac{tan(1)+tan(29)}{1-tan(1)tan(29)}
Therefore, t a n ( 1 ) + t a n ( 29 ) = 1 3 ( 1 t a n ( 1 ) t a n ( 29 ) ) tan(1)+tan(29)=\frac{1}{\sqrt{3}}(1-tan(1)tan(29)) , so putting this value in ( 1 ) (1) , we get ( 3 + t a n ( 1 ) ) . ( 3 + t a n ( 29 ) ) = 3 + ( 1 t a n ( 1 ) . t a n ( 29 ) ) + t a n ( 1 ) . t a n ( 29 ) = 4 (\sqrt{3}+tan(1)).(\sqrt{3}+tan(29))=3+(1-tan(1).tan(29))+tan(1).tan(29)=4

So, like this, all the pairs cancel out to give 4 4 in each bracket, So, the original problem becomes α = 4 14 ( ( 3 + t a n ( 15 ) ) \alpha=4^{14}((\sqrt{3}+tan(15))

Now, we see that ( 3 + t a n ( 15 ) ) = 3 + s i n ( 30 ) 1 + c o s ( 30 ) = 2 (\sqrt{3}+tan(15))=\sqrt{3}+\frac{sin(30)}{1+cos(30)}=2

So, the original number α \alpha is nothing but, α = ( 4 14 ) . 2 \alpha=(4^{14}).2

Now, we may either compute 4 14 4^{14} , using a standard calculator, or we may cork it with congruence to obtain the last 3 digits as 456 456 Now, Last three digits of α = 456 × 2 = 912 \alpha=456×2=912

in step compute 4^14 how can you find last three digit?

Jo Sg - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...