Trigonometry in Algebra 2

Algebra Level 5

x 9 + 9 x 2 1 3 3 = 2 x + 1 \large \sqrt[3]{{\displaystyle\frac{{{x^9} + 9{x^2} - 1}}{3}}} = 2x + 1

Let real numbers x 1 , x 2 , x 3 , x n x_1,x_2, x_3, \cdots x_n be the solutions of the equation above. Then 1 π i = 1 n arccos x i 2 = a b \displaystyle\frac{1}{\pi }\sum\limits_{i = 1}^n \arccos \frac{{{x_i}}}{2} = \frac{a}{b} , where a a and b b are positive coprime integers. Find a + b a+b .

Hint: Need to apply some calculus.

This problem is part of this set .


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hugh Sir
Nov 2, 2018

x 9 + 9 x 2 1 3 3 = 2 x + 1 \sqrt[3]{\dfrac{x^{9}+9x^{2}-1}{3}} = 2x+1

x 9 + 9 x 2 1 = 3 ( 2 x + 1 ) 3 x^{9}+9x^{2}-1 = 3(2x+1)^{3}

x 9 + 9 x 2 1 = 24 x 3 + 36 x 2 + 18 x + 3 x^{9}+9x^{2}-1 = 24x^{3}+36x^{2}+18x+3

x 9 24 x 3 27 x 2 18 x 4 = 0 x^{9}-24x^{3}-27x^{2}-18x-4 = 0

( x 3 3 x 1 ) ( x 6 + 3 x 4 + x 3 + 9 x 2 + 6 x + 4 ) = 0 (x^{3}-3x-1)(x^{6}+3x^{4}+x^{3}+9x^{2}+6x+4) = 0

Since x 6 + 3 x 4 + x 3 + 9 x 2 + 6 x + 4 > 0 x^{6}+3x^{4}+x^{3}+9x^{2}+6x+4 > 0 for every real number x x , the equation to be considered is

x 3 3 x 1 = 0 x^{3}-3x-1 = 0

Substituting x = 2 cos y x = 2\cos y into the equation yields

8 cos 3 y 6 cos y 1 = 0 8\cos^{3} y - 6\cos y - 1 = 0

4 cos 3 y 3 cos y = 1 2 4\cos^{3} y - 3\cos y = \dfrac{1}{2}

cos 3 y = 1 2 \cos 3y = \dfrac{1}{2}

3 y = π 3 , 5 π 3 , 7 π 3 3y = \dfrac{\pi}{3}, \dfrac{5\pi}{3}, \dfrac{7\pi}{3}

y = π 9 , 5 π 9 , 7 π 9 y = \dfrac{\pi}{9}, \dfrac{5\pi}{9}, \dfrac{7\pi}{9}

Note that y = arccos x 2 y = \arccos \dfrac{x}{2} .

Then 1 π i = 1 3 arccos x i 2 = 1 9 + 5 9 + 7 9 = 13 9 = a b \dfrac{1}{\pi} \sum \limits_{i=1}^3 \arccos \dfrac{x_i}{2} = \dfrac{1}{9} + \dfrac{5}{9} + \dfrac{7}{9} = \dfrac{13}{9} = \dfrac{a}{b} .

Therefore, a + b = 13 + 9 = 22 a+b = 13+9 = 22 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...