trigonometry in handy...

Geometry Level 3

(1+tan1)(1+tan2)(1+tan3).........(1+tan45) =2^n then find the value of n ?

21 23 24 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

tan45° = (tana + tanb)/(1 - tana tanb) ........... where a + b = 45 { compound angle formula } tana + tanb = (1 - tana tanb)tan45° tana + tanb = 1 - tana tanb

(1 + tan 1°) (1 + tan 2°) (1 + tan 3°) ··· (1 + tan 45°)

= (1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°) * (1 + tan 45°)

= (1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°) * (1 + 1)

= (1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°) * 2

= 2(1 + tan 1°)(1 + tan 44°) * (1 + tan 2°)(1 + tan 43°) * (1 + tan 3°)(1 + tan 42°) * .... (1 + tan 22°)(1 + tan 23°)

= 2(1 + tan44° + tan1° + tan1° tan44°) * (1 + tan43° + tan2° + tan43° tan2°) * (1 + tan43° + tan3° + tan42° tan3°) * ... * (1 + tan22° + tan23° + tan22° tan23°)

= 2(1 + 1 - tan1° tan44° + tan1° tan44°) * (1 + 1 - tan2° tan43° + tan2° tan43°) * (1 + 1 - tan3° tan43° + tan3° tan43°) * ... * (1 + 1 - tan22° tan23° + tan22° tan23°)

= 2(1 + 1)(1 + 1)(1 + 1) ... (1 + 1) .............................. a total of 23 factors of (1 + 1)

= 2(1 + 1)²²

= 2(2)²²

= 2²³ = 2ⁿ

n = 23 ⇦ ANSWER

U Z
Sep 24, 2014

1+ tan1 = 1+ tan (45 - 44) = 2 1 + t a n 44 \frac{2}{1+ tan 44} similarly do for others

Ratnangshu Das
Dec 15, 2014

let 45=a+b tan 45 = (tan a + tan b)/(1 - tan a tan b) 1 - tan a tan b = tan a + tan b (1 + tan a)(1 + tan b)= 2 Thus the required product = 2^23

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...