Trigonometry is Back!

Geometry Level 3

If cot 1 ( 1 + sin x + 1 sin x 1 + sin x 1 sin x ) = A x \cot^{-1} \left(\dfrac{\sqrt{1+ \sin x} + \sqrt{1- \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right) = Ax , where 0 < x < π 2 0 < x < \dfrac{\pi}{2} , find the value of A A .


The answer is 0.50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 12, 2016

cot A x = 1 + sin x + 1 sin x 1 + sin x 1 sin x = 1 + sin x + 1 sin x 1 + sin x 1 sin x × 1 + sin x + 1 sin x 1 + sin x + 1 sin x = 1 + sin x + 2 1 sin 2 x + 1 sin x 1 + sin x 1 + sin x = 2 + 2 cos x 2 sin x = 1 + cos x sin x Let t = tan ( x 2 ) = 1 + 1 t 2 1 + t 2 2 t 1 + t 2 = 1 + t 2 + 1 t 2 2 t 2 = 2 2 t = 1 t = cot ( x 2 ) \begin{aligned} \cot Ax & = \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \\ & = \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \times \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} + \sqrt{1-\sin x}} \\ & = \frac{1+\sin x + 2\sqrt{1-\sin^2 x} + 1-\sin x}{1+\sin x - 1 + \sin x} \\ & = \frac{2+2\cos x}{2 \sin x} \\ & = \frac{1+\cos x}{\sin x} \quad \quad \small \color{#3D99F6}{\text{Let }t = \tan \left(\frac{x}{2}\right)} \\ & = \frac{1+\frac{1-t^2}{1+t^2}}{\frac{2t}{1+t^2}} \\ & = \frac{1+t^2+1-t^2}{2t^2} \\ & = \frac{2}{2t} = \frac{1}{t} = \cot \left(\frac{x}{2}\right) \end{aligned}

A = 1 2 = 0.5 \implies A = \frac{1}{2} = \boxed{0.5}

[ 1 ± sin x = cos 2 x 2 + sin 2 x 2 ± 2 sin x 2 cos x 2 = ( cos x 2 ± sin x 2 ) 2 ] \large \displaystyle \left[ \because 1 \pm \sin x = \cos ^{2} \frac{x}{2} + \sin ^{2} \frac{x}{2} \pm 2\sin \frac{x}{2} \cos \frac{x}{2} = \left(\cos \frac{x}{2} \pm \sin \frac{x}{2} \right)^2 \right]

cot 1 ( 1 + sin x + 1 sin x 1 + sin x 1 sin x ) = cot 1 ( ( cos x 2 + sin x 2 ) 2 + ( cos x 2 sin x 2 ) 2 ( cos x 2 + sin x 2 ) 2 ( cos x 2 sin x 2 ) 2 ) = cot 1 ( cos x 2 + sin x 2 + cos x 2 sin x 2 cos x 2 + sin x 2 cos x 2 sin x 2 ) = cot 1 ( cos x 2 + sin x 2 + cos x 2 sin x 2 cos x 2 + sin x 2 cos x 2 + sin x 2 ) = cot 1 ( c o t x 2 ) = x 2 \large \displaystyle \begin{aligned} \therefore \cot^{-1} \left(\frac{\sqrt{1+ \sin x} + \sqrt{1- \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right)\\ \large \displaystyle = \cot^{-1} \left(\frac{\sqrt{\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right)^2} + \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2} \right)^2}}{\sqrt{\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right)^2} - \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2} \right)^2}} \right)\\ \large \displaystyle = \cot^{-1} \left(\frac{\left|\cos \frac{x}{2} + \sin \frac{x}{2}\right| + \left|\cos \frac{x}{2} - \sin \frac{x}{2} \right|}{\left|\cos \frac{x}{2} + \sin \frac{x}{2}\right| - \left|\cos \frac{x}{2} - \sin \frac{x}{2} \right|} \right)\\ \large \displaystyle = \cot^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2} - \cos\frac{x}{2} + \sin \frac{x}{2}} \right)\\ \large \displaystyle = \cot^{-1} \left(cot \frac{x}{2} \right) \\ \large \displaystyle = \color{#3D99F6}{\boxed{\frac{x}{2}}} \end{aligned}

x 2 = A x A = 1 2 = 0.5 . \large \displaystyle \implies \frac{x}{2} = Ax \\ \large \displaystyle \implies A = \frac{1}{2} = \color{#69047E}{\boxed{0.5}}.

Isn't it x 2 = A x \dfrac{x}{2} = Ax ??

Hung Woei Neoh - 5 years, 1 month ago

Log in to reply

Great! Thanks!

Samara Simha Reddy - 5 years, 1 month ago

L e t f ( x ) = ( 1 + sin x + 1 sin x 1 + sin x 1 sin x ) M u l t i p l y i n g n u m e r a t o r a n d d e n o m i n a t o r b y 1 + sin x + 1 sin x , a n d s i m p l i f y i n g , f ( x ) = 2 + 2 c o s x 2 s i n x = 2 c o s 2 ( 1 2 x ) 2 s i n ( 1 2 x ) c o s ( 1 2 x ) 1 + c o s T = 2 c o s 2 ( 1 2 T ) a n d s i n T = 2 s i n ( 1 2 T ) c o s ( 1 2 T ) . f ( x ) = c o s ( 1 2 x ) s i n ( 1 2 x ) = c o t ( 1 2 x ) . c o t 1 f ( x ) = c o t 1 c o t ( 1 2 x ) = 12 x = A x . A = 0.5 Letf(x)= \left(\dfrac{\sqrt{1+ \sin x} + \sqrt{1- \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right)\\ Multiplying\ numerator\ and\ denominator\ by\ \sqrt{1+ \sin x} + \sqrt{1- \sin x},\ and\ simplifying,\\ f(x)=\dfrac {2+2cos x}{2sin x}=\dfrac{2*cos^2(\frac 1 2* x)}{2*sin (\frac 1 2* x)*cos (\frac 1 2* x)} \because\ 1+cos T=2*cos^2(\frac 1 2 *T)\ \ and\ \ sin T=2*sin(\frac 1 2*T)*cos(\frac 1 2 *T).\\ \therefore\ f(x)=\dfrac{cos (\frac 1 2* x)}{sin(\frac 1 2* x)}=cot (\frac 1 2* x).\\ \therefore\ cot^{-1}f(x)=cot^{-1}cot (\frac 1 2* x)=1 2* x=A*x.\\ \implies\ A=\color{#D61F06}{0.5}\ \

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...