sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great solution.. Cheers
Relevant wiki: Pythagorean Identities
sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ ( sin 6 θ + cos 6 θ ) + 3 sin 2 θ cos 2 θ ( sin 2 θ + cos 2 θ ) ( sin 4 θ − sin 2 θ cos 2 θ + cos 4 θ ) + 3 sin 2 θ cos 2 θ ( sin 4 θ − sin 2 θ cos 2 θ + cos 4 θ ) + 3 sin 2 θ cos 2 θ sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ ( sin 2 θ + cos 2 θ ) 2 1 = x = x = x = x = x = x = x
sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = x ⟹ sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ × 1 = x sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ ( cos 2 θ + sin 2 θ ) = x Let sin 2 θ be ’a’ and cos 2 θ be ’b’, Then x = a 3 + b 3 + 3 a b ( a + b ) x = ( a + b ) 3 x = ( c o s 2 θ + s i n 2 θ ) 2 x = 1 2 x = 1
Let sin^2(theta)=m ,so cos^2(theta)=1-m. Substitute in our expression ,m^3+(1-m)^3+3m(1-m)=m^3+1+m^2+m-m-m^3-m^2=1
Simply put theta =0 if you want to answer the question only.
Problem Loading...
Note Loading...
Set Loading...
( sin 2 θ + cos 2 θ ) 3 sin 6 θ + 3 sin 4 θ cos 2 θ + 3 sin 2 θ cos 4 θ + cos 6 θ sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ ( sin 2 θ + cos 2 θ ) sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = 1 3 = 1 = 1 = 1