Large Powered Trigonometric Functions

Geometry Level 2

sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = ? \large \sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta = \, ?

0 1 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Sep 17, 2016

( sin 2 θ + cos 2 θ ) 3 = 1 3 sin 6 θ + 3 sin 4 θ cos 2 θ + 3 sin 2 θ cos 4 θ + cos 6 θ = 1 sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ ( sin 2 θ + cos 2 θ ) = 1 sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = 1 \begin{aligned} (\sin^2 \theta + \cos^2 \theta)^3 & = 1^3 \\ \sin^6 \theta + 3\sin^4 \theta \cos^2 \theta + 3 \sin^2 \theta \cos^4 \theta + \cos^6 \theta & = 1 \\ \sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta \cos^2 \theta (\sin^2 \theta +\cos^2 \theta) & = 1 \\ \sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta \cos^2 \theta & = \boxed{1} \end{aligned}

Great solution.. Cheers

Jose Sacramento - 4 years, 8 months ago
Sharky Kesa
Sep 18, 2016

Relevant wiki: Pythagorean Identities

sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = x ( sin 6 θ + cos 6 θ ) + 3 sin 2 θ cos 2 θ = x ( sin 2 θ + cos 2 θ ) ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) + 3 sin 2 θ cos 2 θ = x ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) + 3 sin 2 θ cos 2 θ = x sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ = x ( sin 2 θ + cos 2 θ ) 2 = x 1 = x \begin{aligned} \sin^6 \theta + \cos^6 \theta + 3 \sin^2 \theta \cos^2 \theta &= x\\ \left ( \sin^6 \theta + \cos^6 \theta \right ) + 3 \sin^2 \theta \cos^2 \theta &= x\\ \left ( \sin^2 \theta + \cos^2 \theta \right ) \left (\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta \right ) + 3 \sin^2 \theta \cos^2 \theta &= x\\ \left (\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta \right ) + 3 \sin^2 \theta \cos^2 \theta &= x\\ \sin^4 \theta + \cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta &= x\\ \left ( \sin^2 \theta + \cos^2 \theta \right ) ^2 &= x\\ 1 &= x \end{aligned}

Viki Zeta
Sep 17, 2016

sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = x sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ × 1 = x sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ ( cos 2 θ + sin 2 θ ) = x Let sin 2 θ be ’a’ and cos 2 θ be ’b’, Then x = a 3 + b 3 + 3 a b ( a + b ) x = ( a + b ) 3 x = ( c o s 2 θ + s i n 2 θ ) 2 x = 1 2 x = 1 \sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta = x \\ \implies \sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta\color{#3D99F6}{\times1} = x \\ \sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta\color{#3D99F6}{(\cos^2\theta+\sin^2\theta)} = x \\ \text{Let }\sin^2\theta \text{ be 'a' and }\cos^2\theta\text{ be 'b', Then} \\ x = a^3 + b^3 + 3ab(a+b) \\ x = (a+b)^3 \\ x = (\color{#D61F06}{cos^2\theta + sin^2\theta})^2 \\ x = \color{#D61F06}{1}^2 \\ \fbox{ x = 1 }

Amed Lolo
Dec 10, 2016

Let sin^2(theta)=m ,so cos^2(theta)=1-m. Substitute in our expression ,m^3+(1-m)^3+3m(1-m)=m^3+1+m^2+m-m-m^3-m^2=1

Joe Potillor
Sep 22, 2016

Ramiel To-ong
Nov 28, 2016

nice solution.

Prince Loomba
Sep 24, 2016

Simply put theta =0 if you want to answer the question only.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...