Trigonometry mixup!

Geometry Level pending

Given that sin ( 15 ° x 2 ) = 2 cos 50 ° 3 sin 80 ° tan 10 ° \sin \left(15 \degree-\dfrac{x}{2}\right)=\dfrac{2 \cos 50 \degree}{\sqrt{3} \sin 80 \degree}-\tan 10 \degree , find the value of sin ( 60 ° + x ) \sin (60\degree+x) .

2 3 -\dfrac{2}{3} 2 3 \dfrac{2}{3} 1 3 \dfrac{1}{3} 1 3 -\dfrac{1}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We have sin ( 15 ° x 2 ) = 2 cos 50 ° 3 sin 80 ° tan 10 ° = \sin \left (15\degree-\dfrac{x}{2}\right ) =\dfrac{2\cos 50\degree}{\sqrt 3\sin 80\degree}-\tan 10\degree=

cos 50 ° sin 60 ° sin 80 ° sin 10 ° sin 80 ° = \dfrac{\cos 50\degree}{\sin 60\degree\sin 80\degree}-\dfrac{\sin 10\degree}{\sin 80\degree}=

cos 50 ° sin 60 ° sin 10 ° sin 60 ° sin 80 ° = \dfrac{\cos 50\degree-\sin 60\degree\sin 10\degree}{\sin 60\degree\sin 80\degree}=

cos 60 ° cos 10 ° sin 60 ° cos 10 ° = 1 3 \dfrac{\cos 60\degree\cos 10\degree}{\sin 60\degree\cos 10\degree}=\dfrac{1}{\sqrt 3} .

So, sin ( 60 ° + x ) = \sin (60\degree+x)=

cos ( 30 ° x ) = 1 2 sin 2 ( 15 ° x 2 ) = \cos (30\degree-x)=1-2\sin^2 \left (15\degree-\dfrac{x}{2}\right ) =

1 2 × 1 3 = 1 3 1-2\times \dfrac{1}{3}=\boxed {\dfrac{1}{3}} .

That is brilliant.

ADAMS AYOADE - 1 year, 1 month ago
Chew-Seong Cheong
Apr 25, 2020

sin ( 15 ° x 2 ) = 2 cos 50 ° 3 sin 80 ° tan 10 ° = sin 40 ° 3 2 cos 10 ° sin 10 ° cos 10 ° = sin ( 30 ° + 10 ° ) 3 2 sin 10 ° 3 2 cos 10 ° = 1 2 cos 10 ° + 3 2 sin 10 ° 3 2 sin 10 ° 3 2 cos 10 ° = 1 2 cos 10 ° 3 2 cos 10 ° = 1 3 \begin{aligned} \sin\left(15\degree - \frac x2\right) & = \frac {2\cos 50\degree}{\sqrt 3\sin 80\degree} - \tan 10\degree \\ & = \frac {\sin 40\degree}{\frac {\sqrt 3}2\cos 10\degree} - \frac {\sin 10\degree}{\cos 10\degree} \\ & = \frac {\sin (30\degree+10\degree)- \frac {\sqrt 3}2\sin 10\degree}{\frac {\sqrt 3}2\cos 10\degree} \\ & = \frac {\frac 12 \cos 10\degree + \frac {\sqrt 3}2\sin 10\degree - \frac {\sqrt 3}2\sin 10\degree}{\frac {\sqrt 3}2\cos 10\degree} \\ & = \frac {\frac 12 \cos 10\degree}{\frac {\sqrt 3}2\cos 10\degree} = \frac 1{\sqrt 3} \end{aligned}

Therefore, sin ( 60 ° + x ) = cos ( 30 ° x ) = 1 2 sin 2 ( 15 ° x 2 ) = 1 2 3 = 1 3 \sin (60\degree + x) = \cos (30\degree - x) = 1 - 2\sin^2 \left(15\degree -\dfrac x2\right) = 1 - \dfrac 23 = \boxed{\dfrac 13} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...