Trigonometry or Real or a Complex Problem

Geometry Level 4

If 2 cos x = z + 1 z 2 \cos x = z + \dfrac{1}{z} and z 12 + 1 z 12 = 2 z^{12} + \dfrac{1}{z^{12}} = 2 , which of the following options is true?

cos 6 x { 1 , 1 } , cos 9 x { 1 , 1 } \cos 6x\in\{1,-1\}, \cos 9x\in\{1,-1\} cos 3 x { 1 , 1 } , cos 9 x { 1 , 1 } \cos 3x\in\{-1,1\}, \cos 9x\in \{-1,1\} sin 2 x { 0 , 3 2 , 3 2 } , cos 9 x { 1 , 1 } \sin 2x\in\left\{0,\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right\}, \cos 9x\in\{1,-1\} cos 6 x { 1 , 1 } , sin 2 x { 0 , 3 2 , 3 2 } \cos 6x\in\{-1,1\}, \sin 2x\in\left\{0,\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right\}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andreas Wendler
Jun 9, 2016

We write: z = r e i ϕ z=r\cdot e^{i\phi} From the second equation we get: ( r 12 + r 12 ) c o s ( 12 ϕ ) = 2 (r^{12}+r^{-12})cos(12\phi)=2 as well as ( r 12 r 12 ) s i n ( 12 ϕ ) = 0 (r^{12}-r^{-12})sin(12\phi)=0 Solution is r=1 and ϕ = k π 6 \phi=\frac{k\pi}{6} whereat k is an integer.

The first equation now gives us x = k π 6 x=\frac{k\pi}{6} . From the given choices only the last one is valid!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...