Trigonometry Challenge

Geometry Level 2

If cos [ 6 arccos ( 1 3 ) ] = A B , \cos\left[6\arccos \left(\dfrac{1}{3}\right)\right] = \frac{A}{B}, where A A and B B are relatively prime positive integers, find B A . B-A.


The answer is 400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sandeep Bhardwaj
Oct 16, 2014

Since we have cos ( 6 cos 1 ( 1 3 ) ) \cos \left( 6 \cdot \cos^{-1}\left(\frac{1}{3} \right) \right) , let's take cos 1 ( 1 3 ) = θ \cos^{-1} \left( \frac{1}{3} \right)=\theta cos θ = 1 3 \Rightarrow \cos\theta=\frac{1}{3} .

Now we have to find cos 6 θ \cos6\theta .

From Triple Angle Identities , we can derive:

cos 6 θ = 4 ( cos 2 θ ) 3 3 cos 2 θ \cos6\theta \ =4\cdot(\cos2\theta)^3-3\cos2\theta

= 4 ( 2 cos 2 θ 1 ) 3 3 ( 2 cos 2 θ 1 ) \qquad \quad =4\cdot(2\cdot\cos^2\theta-1)^3-3\cdot(2\cos^2\theta-1)

= 4 ( 2 × 1 9 1 ) 3 3 ( 2 × 1 9 1 ) \qquad \quad =4\cdot \left(2 \times \frac{1}{9}-1\right)^3-3 \left(2 \times \frac{1}{9}-1\right)

= 1372 729 + 21 9 \qquad \quad=\dfrac{-1372}{729}+\dfrac{21}{9}

= 329 729 \qquad \quad =\dfrac{329}{729}

B A = 729 329 = 400. \Rightarrow B-A = 729-329=400. \square

oh god ..i did the complete same way except at the last, instead of subtracting, i added the two ..

Aritra Jana - 6 years, 7 months ago

great solution

will jain - 6 years, 7 months ago

Excellent!!!

rakesh kumar - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...