Trigonometry Problem 2

Geometry Level 3

Let a = sin ( 1 0 ) a = \sin (10^\circ) , b = sin ( 5 0 ) b = \sin (50^\circ) and c = sin ( 7 0 ) c = \sin (70^\circ) . Find

8 a b c ( a + b c ) ( 1 a + 1 b 1 c ) 8abc\left(\frac{a+b}{c}\right)\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

a + b = sin 1 0 + sin 5 0 = sin ( 3 0 2 0 ) + sin ( 3 0 + 2 0 ) = sin 3 0 cos 2 0 sin 2 0 cos 3 0 + sin 3 0 cos 2 0 + sin 2 0 cos 3 0 = 2 sin 3 0 cos 2 0 = 2 1 2 sin ( 9 0 2 0 ) = sin 7 0 = c \begin{aligned} a+b & = \sin 10^\circ + \sin 50^\circ \\ & = \sin (30^\circ -20^\circ) + \sin (30^\circ + 20^\circ) \\ & = \sin 30^\circ \cos 20^\circ - \sin 20^\circ \cos 30^\circ + \sin 30^\circ \cos 20^\circ + \sin 20^\circ \cos 30^\circ \\ & = 2\sin 30^\circ \cos 20^\circ \\ & = 2\cdot \frac 12 \cdot \sin (90^\circ - 20^\circ) \\ & = \sin 70^\circ \\ & = c \end{aligned}

a b c = sin 1 0 sin 5 0 sin 7 0 = cos 8 0 cos 4 0 cos 2 0 = sin 2 0 cos 2 0 cos 4 0 cos 8 0 sin 2 0 = sin 4 0 cos 4 0 cos 8 0 2 sin 2 0 = sin 8 0 cos 8 0 4 sin 2 0 = sin 16 0 8 sin 2 0 sin ( 18 0 θ ) = sin θ = sin 2 0 8 sin 2 0 = 1 8 \begin{aligned} abc & = \sin 10^\circ \sin 50^\circ \sin 70^\circ \\ & = \cos 80^\circ \cos 40^\circ \cos 20^\circ \\ & = \frac {\sin 20^\circ \cos 20^\circ \cos 40^\circ \cos 80^\circ}{\sin 20^\circ} \\ & = \frac {\sin 40^\circ \cos 40^\circ \cos 80^\circ}{2\sin 20^\circ} \\ & = \frac {\sin 80^\circ \cos 80^\circ}{4\sin 20^\circ} \\ & = \frac {\sin 160^\circ}{8\sin 20^\circ} & \small {\color{#3D99F6}\sin (180^\circ - \theta) = \sin \theta} \\ & = \frac {\sin 20^\circ}{8\sin 20^\circ} \\ & = \frac 18 \end{aligned}

a + b c = 0 ( a + b c ) 2 = 0 a 2 + b 2 + c 2 + 2 ( a b b c c a ) = 0 b c + c a a b = 1 2 ( a 2 + b 2 + c 2 ) = 1 2 ( sin 2 1 0 + sin 2 5 0 + sin 2 7 0 ) = 1 4 ( 3 cos 2 0 cos 10 0 cos 14 0 ) = 1 4 ( 3 sin 7 0 + sin 1 0 + sin 5 0 ) = 1 4 ( 3 0 ) = 3 4 \begin{aligned} a + b - c & = 0 \\ (a + b - c)^2 & = 0 \\ a^2+b^2+c^2 + 2(ab-bc-ca) & = 0 \\ bc + ca - ab & = \frac 12(a^2+b^2+c^2) \\ & = \frac 12 ( \sin^2 10^\circ + \sin^2 50^\circ + \sin^2 70^\circ) \\ & = \frac 14 (3 - \cos 20^\circ - \cos 100^\circ - \cos 140^\circ) \\ & = \frac 14 (3 - \sin 70^\circ + \sin 10^\circ + \sin 50^\circ) \\ & = \frac 14 (3 - 0) \\ & = \frac 34 \end{aligned}

Now, we have:

X = 8 a b c ( a + b c ) ( 1 a + 1 b 1 c ) = 8 1 8 ( c c ) ( b c + c a a b a b c ) = 8 1 8 1 3 4 8 = 6 \begin{aligned} X & = 8abc \left(\frac {a+b}c \right) \left(\frac 1a+\frac 1b - \frac 1c \right) \\ & = 8 \cdot \frac 18 \left(\frac cc \right) \left(\frac {bc+ca-ab}{abc} \right) \\ & = 8 \cdot \frac 18 \cdot 1 \cdot \frac 34 \cdot 8 \\ & = \boxed{6} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...