Trigonometry problem #4

Geometry Level 2

True or false:

tan β sec β + 1 sec β 1 tan β = 1 \large \frac{\tan \beta}{\sec \beta +1} - \frac{\sec \beta -1}{\tan \beta} = 1

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Munem Shahriar
Feb 18, 2018

tan β sec β + 1 sec β 1 tan β = tan 2 β ( sec β + 1 ) ( sec β 1 ) ( sec β + 1 ) ( tan β ) = tan 2 β ( sec 2 β 1 ) ( tan β ) ( sec β + 1 ) = tan 2 β tan 2 β ( tan β ) ( sec β + 1 ) = 0 ( tan β ) ( sec β + 1 ) = 0 \begin{aligned} \dfrac{\tan \beta}{\sec \beta +1} - \dfrac{\sec \beta -1}{\tan \beta} &= \dfrac{\tan^2 \beta - (\sec \beta + 1) (\sec \beta - 1)}{(\sec \beta + 1)(\tan \beta)} \\& = \dfrac{\tan ^2 \beta - (\sec^2 \beta - 1)}{(\tan \beta)(\sec \beta +1)} \\& = \dfrac{\tan^2 \beta - \tan^2 \beta}{(\tan \beta)(\sec \beta +1)} \\& = \dfrac 0{(\tan \beta)(\sec \beta + 1)} \\& = 0 \\ \end{aligned}

Hence 0 1 0 \ne 1

Note: sec 2 β 1 = tan 2 β \sec^2 \beta - 1 = \tan^2 \beta

Tom Engelsman
Feb 17, 2018

If we apply a common denominator, we obtain:

t a n ( β ) s e c ( β ) + 1 s e c ( β ) 1 t a n ( β ) = t a n 2 ( β ) ( s e c 2 ( β ) 1 ) t a n ( β ) ( s e c ( β ) + 1 ) \frac{tan(\beta)}{sec(\beta) + 1} - \frac{sec(\beta) -1}{tan(\beta)} = \frac{tan^{2}(\beta) - (sec^{2}(\beta) - 1)}{tan(\beta)(sec(\beta) + 1)} ;

but s e c 2 ( β ) t a n 2 ( β ) = 1 sec^{2}(\beta) - tan^{2}(\beta) = 1 , which yields zero in the numerator. Hence, the answer is 0 . \boxed{0}.

tan β sec β + 1 sec β 1 tan β \frac {\tan\beta}{\sec\beta +1} - \frac {\sec\beta - 1}{\tan\beta}

= tan 2 β ( sec 2 β 1 ) tan β ( sec β + 1 ) = \frac {\tan^2 \beta - (\sec^2 \beta -1)}{\tan\beta (\sec\beta +1)}

= tan 2 β sec 2 β + 1 tan β ( sec β + 1 ) = \frac {\tan^2\beta - \sec^2\beta +1}{\tan\beta (\sec\beta +1)}

= 1 + 1 tan β ( sec β + 1 ) = \frac {-1+1}{\tan\beta (\sec\beta +1) }

= 0. =0.

But, 0 1. 0 \neq 1. Therefore, the answer is F a l s e . \boxed {False.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...