Cunning ploy

Geometry Level 5

If the exact value of tan ( 2 π 13 ) + 4 sin ( 6 π 13 ) \tan { \left( \frac { 2\pi }{ 13 } \right) } +4\sin { \left( \frac { 6\pi }{ 13 } \right) } is of the form A + 2 B \sqrt { A+2\sqrt { B } } where A A and B B are positive integers, find the value of A + B A+B .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

This is a little overkill solution: let w = e 2 π i / 13 w=e^{2 \pi i/13} and let V V be the value we want, so, if we multiply both sides by i i we get:

i V = i tan ( 2 π 13 ) + 4 i sin ( 6 π 13 ) iV=i\tan\left(\dfrac{2\pi}{13}\right)+4i\sin\left(\dfrac{6\pi}{13}\right)

Also, we know that w k + 1 / w k = 2 cos ( 2 π k 13 ) w^k+1/w^k=2\cos\left(\dfrac{2\pi k}{13}\right) , w k 1 / w k = 2 i sin ( 2 π k 13 ) w^k-1/w^k=2i\sin\left(\dfrac{2\pi k}{13}\right) , w 13 = 1 w^{13}=1 , w + w 2 + + w 11 + w 12 = 1 w+w^2+\cdots+w^{11}+w^{12}=-1 and w k = w 13 k w^{-k}=w^{13-k}

So, the expression becomes:

i V = w 1 / w w + 1 / w + 2 ( w 3 1 / w 3 ) i V = w 2 1 w 2 + 1 + 2 w 3 2 w 10 iV=\dfrac{w-1/w}{w+1/w}+2(w^3-1/w^3) \\ iV=\dfrac{w^2-1}{w^2+1}+2w^3-2w^{10}

With a little trick we can delete that fraction:

i V = w 2 ( 1 w 24 ) w 2 + 1 + 2 w 3 2 w 10 i V = w 2 ( 1 + w 2 ) ( 1 w 2 ) ( 1 + w 4 ) ( 1 + w 8 + w 16 ) 1 + w 2 + 2 w 3 2 w 10 iV=\dfrac{w^2(1-w^{24})}{w^2+1}+2w^3-2w^{10} \\ iV=\dfrac{w^2(1+w^2)(1-w^2)(1+w^4)(1+w^8+w^{16})}{1+w^2}+2w^3-2w^{10}

After expanding and simplifying we get:

i V = w + w 2 + w 3 + w 5 + w 6 + w 9 ( w 4 + w 7 + w 8 + w 10 + w 11 + w 12 ) iV=w+w^2+w^3+w^5+w^6+w^9-(w^4+w^7+w^8+w^{10}+w^{11}+w^{12})

Now, let a = w + w 2 + w 3 + w 5 + w 6 + w 9 a=w+w^2+w^3+w^5+w^6+w^9 and b = w 4 + w 7 + w 8 + w 10 + w 11 + w 12 b=w^4+w^7+w^8+w^{10}+w^{11}+w^{12} , so i V = a b iV=a-b

Try to find a + b a+b and a b ab , the first one is easy:

a + b = w + w 2 + + w 11 + w 12 = 1 a+b=w+w^2+\cdots+w^{11}+w^{12}=-1

Now, to find a b ab we need to expand a large product, which after simplification is:

a b = 4 + w + w 3 + w 4 + w 9 + w 10 + w 12 ab=4+w+w^3+w^4+w^9+w^{10}+w^{12}

From here, let c = w + w 3 + w 4 + w 9 + w 10 + w 12 c=w+w^3+w^4+w^9+w^{10}+w^{12} and d = w 2 + w 5 + w 6 + w 7 + w 8 + w 11 d=w^2+w^5+w^6+w^7+w^8+w^{11} , so we can find c + d c+d and c d cd again:

c + d = w + w 2 + + w 11 + w 12 = 1 c+d=w+w^2+\cdots+w^{11}+w^{12}=-1

The product c d cd is also large, which after simplificacion is:

c d = 3 cd=-3

That is great, because we can get c c , and then a b a-b :

( c d ) 2 = ( c + d ) 2 4 c d = ( 1 ) 2 4 ( 3 ) = 13 (c-d)^2=(c+d)^2-4cd=(-1)^2-4(-3)=13

Since c > 0 c>0 and d < 0 d<0 , then c d = 13 c-d=\sqrt{13} .

So, c = 1 + 13 2 c=\dfrac{-1+\sqrt{13}}{2} (earlier I also posted this part of the problem as another problem here ).

Now, let's obtain a b ab :

a b = 4 + 1 + 13 2 = 7 + 13 2 ab=4+\dfrac{-1+\sqrt{13}}{2}=\dfrac{7+\sqrt{13}}{2}

Finally, obtain V V , with the fact that V > 0 V>0 :

( a b ) 2 = ( a + b ) 2 4 a b = ( 1 ) 2 2 ( 7 + 13 ) = ( 13 + 2 13 ) a b = 13 + 2 13 i i V = 13 + 2 13 i (a-b)^2=(a+b)^2-4ab=(-1)^2-2(7+\sqrt{13})=-(13+2\sqrt{13}) \\ a-b=\sqrt{13+2\sqrt{13}}i\\ iV=\sqrt{13+2\sqrt{13}}i

Finally, V = 13 + 2 13 V=\sqrt{13+2\sqrt{13}}

On comparing we get A = B = 13 A=B=13 , thus the answer is A + B = 26 A+B=\boxed{26} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...