Trigonometry problem #5

Geometry Level 1

True or false:

1 + cos θ 1 cos θ = cot θ + csc θ \large \sqrt{\frac{1+\cos \theta }{1-\cos \theta }} = \cot \theta + \csc \theta

Note: 0 < θ < 180 0^\circ < \theta < {180}^\circ

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Munem Shahriar
Mar 25, 2018

1 + cos θ 1 cos θ = ( 1 + cos θ ) ( 1 + cos θ ) ( 1 cos θ ) ( 1 + cos θ ) = ( 1 + cos θ ) 2 1 cos 2 θ = 1 + cos θ sin 2 θ [ 1 cos 2 θ = sin 2 θ ] = 1 + cos θ sin θ = 1 sin θ + cos θ sin θ = csc θ + cot θ \large \begin{aligned} \sqrt{\frac{1+\cos \theta }{1-\cos \theta }} & = \sqrt{\frac{(1+\cos \theta )(1+\cos \theta )}{(1-\cos \theta )(1+\cos \theta)}} \\ & = \frac{\sqrt{(1+\cos \theta)^2}}{\sqrt{1 - \cos^2 \theta}} \\ &= \frac{1+ \cos \theta}{\sqrt{\sin^2 \theta}}~~~~~~~~[1 - \cos^2 \theta = \sin^2 \theta] \\ & = \frac{1 + \cos \theta}{\sin \theta} \\ & = \frac1{\sin \theta} + \frac{\cos \theta}{\sin \theta} \\ & = \csc \theta + \cot \theta \\ \end{aligned}

The answer is true.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...