Trigonometry problem of jee level

Geometry Level 3

Number of integral values of α \alpha for which the trigonometric equation cos 2 x + α sin x = 2 α 7 \cos 2x+\alpha \sin x=2\alpha -7 has a solution is ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jan 14, 2020

Let us rewrite the above trig equation as:

1 2 s i n 2 x + α s i n x = 2 α 7 0 = 2 s i n 2 x α s i n x + ( 2 α 8 ) 1-2sin^{2}x + \alpha sin x = 2\alpha - 7 \Rightarrow 0 = 2sin^{2}x - \alpha sin x + (2\alpha - 8) ;

or s i n x = α ± α 2 4 ( 2 ) ( 2 α 8 ) 4 = α ± α 2 16 α + 64 4 = α ± ( α 8 ) 2 4 = α ± ( α 8 ) 4 = 2 , α 2 2. sin x = \frac{\alpha \pm \sqrt{\alpha^{2} - 4(2)(2\alpha-8)}}{4} = \frac{\alpha \pm \sqrt{\alpha^{2} -16\alpha + 64}}{4} = \frac{\alpha \pm \sqrt{(\alpha - 8)^2}}{4} = \frac{\alpha \pm (\alpha - 8)}{4} = 2, \frac{\alpha}{2} - 2.

Since 1 s i n x 1 , -1 \le sin x\le 1, 2 cannot be a solution. Hence we require: 1 α 2 2 1 2 α 6 . -1 \le \frac{\alpha}{2} - 2 \le 1 \Rightarrow \boxed{2 \le \alpha \le 6}. This gives us 5 possible integral solutions for α . \alpha.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...