Trigonometry problem #3

Geometry Level 3

If 15 cos 2 β + 2 sin β = 7 15 \cos^2 \beta + 2\sin \beta = 7 and π 7 < β < π 2 , -\dfrac{\pi}{7} < \beta < \dfrac{\pi}{2}, then find the largest value of cot β \cot \beta .


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hassan Abdulla
Feb 4, 2018

15 cos 2 β + 2 sin β = 7 15 ( 1 sin 2 β ) + 2 sin β = 7 15 sin 2 β 2 sin β 8 = 0 ( 5 sin β 4 ) ( 3 sin β + 2 ) = 0 sin β = 4 5 o r sin β = 2 3 π 7 < β < π 2 cos β > 0 sin β < 0 and cos β > 0 cot β < 0 sin β = 4 5 cos β = 3 5 cot β = sin β cos β = 3 4 = 0.75 15\cos ^{ 2 } \beta +2\sin \beta =7 \\ 15\left( 1-\sin ^{ 2 }{ \beta } \right) +2\sin \beta =7 \\ 15\sin ^{ 2 }{ \beta } -2\sin \beta -8=0 \\ \left( 5\sin \beta -4 \right) \left( 3\sin \beta +2 \right) =0 \\ \sin \beta =\frac { 4 }{ 5 } or\quad \sin \beta =-\frac { 2 }{ 3 } \\ \begin{aligned} \small \color{#3D99F6} -\frac { \pi }{ 7 } <\beta <\frac { \pi }{ 2 } \Rightarrow \cos { \beta } >0 & & \small \color{#3D99F6} \sin \beta <0 \text{ and } \cos { \beta } >0\Rightarrow \cot { \beta } <0 \end{aligned} \\ \Rightarrow \sin \beta =\frac { 4 }{ 5 } \Rightarrow \cos { \beta } =\frac { 3 }{ 5 } \\ \cot { \beta } =\frac { \sin \beta }{ \cos { \beta } } =\frac { 3 }{ 4 } =0.75

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...