Trigonometry + Progressions = Trigonessions!

Geometry Level 2

If sin θ , cos θ , tan θ \sin\theta, \cos\theta,\tan\theta are in geometric progression, find the value of cot 6 θ cot 2 θ \cot^6\theta-\cot^2\theta


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sravanth C.
Oct 16, 2015

As they are in GP, cos θ sin θ = tan θ cos θ cos 2 θ = sin 2 θ cos θ sin 2 θ = cos 3 θ \dfrac{\cos\theta}{\sin\theta}=\dfrac{\tan\theta}{\cos\theta}\implies\cos^2\theta=\dfrac{\sin^2\theta}{\cos\theta}\\\boxed{\sin^2\theta=\cos^3\theta}

We know, cos θ \cos\theta is the Geometric mean of the other to values. sin θ × tan θ = cos θ sin θ cos θ = cos θ tan θ = cos θ cot 2 θ = 1 cos θ \therefore\sqrt{\sin\theta×\tan\theta}=\cos\theta\\\dfrac{\sin\theta}{\sqrt{\cos\theta}}=\cos\theta\\\tan\theta=\sqrt{\cos\theta}\implies\boxed{\cot^2\theta=\dfrac1{\cos\theta}}

cot 6 θ cot 2 θ = 1 cos 3 θ 1 cos θ = cos θ ( 1 cos 2 θ ) cos 4 θ = cos θ × sin 2 θ cos 4 θ = cos θ × cos 3 θ cos 4 θ = 1 \therefore\cot^6\theta-\cot^2\theta=\dfrac1{\cos^3\theta}-\dfrac1{\cos\theta}\\=\dfrac{\cos\theta(1-\cos^2\theta)}{\cos^4\theta}=\dfrac{\cos\theta×\sin^2\theta}{\cos^4\theta}\\=\dfrac{\cos\theta×\cos^3\theta}{\cos^4\theta}=\boxed1

Moderator note:

The expression and solution seems somewhat "arbitrary". What is the reason that it all works out nicely?

Alex Burgess
Feb 25, 2019

sin ( θ ) , cos ( θ ) , tan ( θ ) = sin ( θ ) , a sin ( θ ) , a 2 sin ( θ ) \sin(\theta), \cos(\theta), \tan(\theta) = \sin(\theta), a * \sin(\theta), a^2 * \sin(\theta) for some a ( θ ) a(\theta) .

As tan ( θ ) = sin ( θ ) cos ( θ ) = a 2 sin ( θ ) , a = 1 cos ( θ ) \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = a^2 * \sin(\theta), a = \frac{1}{\sqrt{\cos(\theta)}} .

cos ( θ ) = sin ( θ ) cos ( θ ) \cos(\theta) = \frac{\sin(\theta)}{\sqrt{\cos(\theta)}} , so cos 3 ( θ ) = sin 2 ( θ ) \cos^3(\theta) = \sin^2(\theta) .

cot 6 ( θ ) cot 2 ( θ ) = ( cos 3 ( θ ) ) 2 sin 6 ( θ ) ( cos 2 ( θ ) sin 2 ( θ ) \cot^6(\theta) - \cot^2(\theta) = \frac{(\cos^3(\theta))^2}{\sin^6(\theta)} - \frac{(\cos^2(\theta)}{\sin^2(\theta)}

= sin 4 ( θ ) sin 6 ( θ ) cos 2 ( θ ) sin 2 ( θ ) = 1 cos 2 ( θ ) sin 2 ( θ ) = 1 = \frac{\sin^4(\theta)}{\sin^6(\theta)} - \frac{\cos^2(\theta)}{\sin^2(\theta)} = \frac{1 - \cos^2(\theta)}{\sin^2(\theta)} = 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...