Trigonometry Samurai!

Geometry Level 3

k = 1 29 ( 3 + tan k ) = a b \large \prod _{ k=1 }^{ 29 }{ \left( \sqrt { 3 } + \tan k^\circ \right) } = a^b

The equation above holds true for a prime number a a and natural number b b . Find a + b a + b .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 31, 2018

P = k = 1 29 ( 3 + tan k ) = k = 1 29 ( 3 + cot ( 9 0 k ) ) For k [ 1 , 29 ] , 90 k [ 61 , 89 ] 60 + k [ 61 , 89 ] = k = 1 29 ( 3 + cot ( 6 0 + k ) ) = k = 1 29 ( 3 + 1 tan 6 0 tan k tan 6 0 + tan k ) = k = 1 29 ( 3 + 1 3 tan k 3 + tan k ) = k = 1 29 4 3 + tan k \begin{aligned} P & = \prod_{k=1}^{29} \left(\sqrt 3 + \tan k^\circ \right) \\ & = \prod_{k=1}^{29} \left(\sqrt 3 + \cot \left({\color{#3D99F6}90^\circ - k^\circ} \right) \right) & \small \color{#3D99F6} \text{For } k \in [1,29], 90-k \in [61, 89] \equiv 60+k \in [61, 89] \\ & = \prod_{k=1}^{29} \left(\sqrt 3 + \cot \left({\color{#3D99F6}60^\circ + k^\circ} \right) \right) \\ & = \prod_{k=1}^{29} \left(\sqrt 3 + \frac {1-\tan 60^\circ \tan k^\circ}{\tan 60^\circ + \tan k^\circ} \right) \\ & = \prod_{k=1}^{29} \left(\sqrt 3 + \frac {1-\sqrt 3 \tan k^\circ}{\sqrt 3 + \tan k^\circ} \right) \\ & = \prod_{k=1}^{29} \frac 4{\sqrt 3 + \tan k^\circ} \end{aligned}

Now, we have:

P 2 = k = 1 29 ( 3 + tan k ) k = 1 29 4 3 + tan k = k = 1 29 4 = 4 29 P = 2 29 \begin{aligned} P^2 & = \prod_{k=1}^{29} \left(\sqrt 3 + \tan k^\circ \right) \prod_{k=1}^{29} \frac 4{\sqrt 3 + \tan k^\circ} = \prod_{k=1}^{29} 4 = 4^{29} \\ \implies P & = 2^{29} \end{aligned}

Therefore, a + b = 2 + 29 = 31 a+b = 2+29 = \boxed{31} .

@Chew-Seong Cheong , Sir please tell how you got step 3 from step 2 ? Pleas elaborate it more.

Priyanshu Mishra - 3 years, 4 months ago

Log in to reply

I have added a note. Hope that it helps.

Chew-Seong Cheong - 3 years, 4 months ago

Log in to reply

@Chew-Seong Cheong , thanks sir.

Priyanshu Mishra - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...