Trigonometry warm up

Geometry Level 3

sin ( a b ) cos ( a + b ) + sin ( b c ) cos ( b + c ) + sin ( c a ) cos ( a + c ) \sin(a-b)\cos(a+b)+\sin(b-c)\cos(b+c)+\sin(c-a)\cos(a+c)

Simplify the expression above.

Give your answer to 2 decimal places.


The answer is 0.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
May 1, 2016

The expression can be written as: 1 2 ( cyc 2 cos ( a + b ) sin ( a b ) ) \large\frac 12\left(\displaystyle\sum_{\text{cyc}}2\cos(a+b)\sin(a-b)\right)

( Use 2 cos A sin B = sin ( A + B ) sin ( A B ) ) (\small{\color{teal}{\text{Use } 2\cos A\sin B=\sin (A+B)-\sin (A-B)}})

= 1 2 ( cyc ( sin 2 a sin 2 b ) ) = 0 \large=\dfrac 12\left(\displaystyle\sum_{\text{cyc}}(\sin 2a-\sin 2b)\right)=\boxed{0}

Wow, your solution is much shorter than mine

P C - 5 years, 1 month ago

Log in to reply

Thanks... :-)

Rishabh Jain - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...