Sine or Cosine Rule?

Geometry Level 5

In Δ A B C \Delta ABC , A D AD is the altitude from A A . Given b > c b\gt c , C = 2 3 \angle C=23^{\circ} and A D = a b c b 2 c 2 AD=\frac{abc}{b^{2}-c^{2}} , find B \angle B . Enter your answer in degrees.

This problem is part of the set Trigonometry .

Details and Assumptions

  • The picture above is not up to scale.


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Xuming Liang
Aug 10, 2015

A solution with sine rule: Using sine rule and area we can easily obtain: A D = b c 2 R = a b c b 2 c 2 AD=\frac {bc}{2R}=\frac {abc}{b^2-c^2} b 2 c 2 a = 2 R \implies \frac {b^2-c^2}{a}=2R where R R is the circumradius of A B C ABC . If B \angle B is acute or right, then b 2 c 2 a = C D B D = 2 R C D \frac {b^2-c^2}{a}=CD-BD=2R\le CD which is clearly absurd. Hence D D must lie outside of segment C B CB , and b 2 c 2 a = C D + B D = 2 R \frac {b^2-c^2}{a}=CD+BD=2R . Let B B' be the other point on line B C BC such that D B = D B DB=DB' ; thus C B = 2 R CB'=2R and A B = A B AB=AB' . By sine rule again the circumradii of A B C , A B C ABC,AB'C are the same, which forces C A B = 9 0 B = 90 + C = 11 3 \angle CAB'=90^{\circ} \implies \angle B=90+\angle C=\boxed {113^{\circ}}

Moderator note:

Interesting approach and observation!

First, by the Cosine rule, we have that

c 2 = a 2 + b 2 2 a b cos ( 2 3 ) b 2 c 2 = a ( 2 b cos ( 2 3 ) a ) c^{2} = a^{2} + b^{2} - 2ab\cos(23^{\circ}) \Longrightarrow b^{2} - c^{2} = a(2b\cos(23^{\circ}) - a)

A D = a b c b 2 c 2 = b c 2 b cos ( 2 3 ) a . |AD| = \dfrac{abc}{b^{2} - c^{2}} = \dfrac{bc}{2b\cos(23^{\circ}) - a}.

Now since A D AD is an altitude we have that A D = b sin ( 2 3 ) |AD| = b\sin(23^{\circ}) , so

b sin ( 2 3 ) = b c 2 b cos ( 2 3 ) a c = 2 b sin ( 2 3 ) cos ( 2 3 ) a sin ( 2 3 ) . b\sin(23^{\circ}) = \dfrac{bc}{2b\cos(23^{\circ}) - a} \Longrightarrow c = 2b\sin(23^{\circ})\cos(23^{\circ}) - a\sin(23^{\circ}).

Now we also have that b sin ( 2 3 ) = A D = c sin ( B ) b\sin(23^{\circ}) = |AD| = c\sin(\angle B) , so now we have

c = 2 c sin ( B ) cos ( 2 3 ) a sin ( 2 3 ) c = 2c\sin(\angle B)\cos(23^{\circ}) - a\sin(23^{\circ})

c ( 2 sin ( B ) cos ( 2 3 ) 1 ) = a sin ( 2 3 ) \Longrightarrow c(2\sin(\angle B)\cos(23^{\circ}) - 1) = a\sin(23^{\circ})

a c = 2 sin ( B ) cos ( 2 3 ) 1 sin ( 2 3 ) . \Longrightarrow \dfrac{a}{c} = \dfrac{2\sin(\angle B)\cos(23^{\circ}) - 1}{\sin(23^{\circ})}.

But by the Sine rule we know that a c = sin ( A ) sin ( 2 3 ) \dfrac{a}{c} = \dfrac{\sin(\angle A)}{\sin(23^{\circ})} , and so

2 sin ( B ) cos ( 2 3 ) 1 = sin ( A ) = sin ( 15 7 B ) 2\sin(\angle B)\cos(23^{\circ}) - 1 = \sin(\angle A) = \sin(157^{\circ} - \angle B)

2 sin ( B ) cos ( 2 3 ) 1 = sin ( 2 3 ) cos ( B ) + cos ( 2 3 ) sin ( B ) \Longrightarrow 2\sin(\angle B)\cos(23^{\circ}) - 1 = \sin(23^{\circ})\cos(\angle B) + \cos(23^{\circ})\sin(\angle B)

sin ( B ) cos ( 2 3 ) cos ( B ) sin ( 2 3 ) = 1 sin ( B 2 3 ) = 1 \Longrightarrow \sin(\angle B)\cos(23^{\circ}) - \cos(\angle B)\sin(23^{\circ}) = 1 \Longrightarrow \sin(\angle B - 23^{\circ}) = 1

B 2 3 = 9 0 B = 11 3 . \Longrightarrow \angle B - 23^{\circ} = 90^{\circ} \Longrightarrow \angle B = \boxed{113^{\circ}}.

Note that B > 9 0 \angle B \gt 90^{\circ} , so the diagram is a bit deceptive, but I don't think unfair. :)

Brian Charlesworth - 6 years, 3 months ago
Ankit Kumar Jain
Feb 22, 2018

A D = b sin ( C ) AD = b\sin(C)

b sin ( C ) = a b c b 2 c 2 \Rightarrow b\sin(C) = \dfrac{abc}{b^2-c^2}

sin ( C ) = a c b 2 c 2 = sin ( A ) sin ( C ) sin 2 ( B ) sin 2 ( C ) = sin ( A ) sin ( C ) sin ( B + C ) sin ( B C ) = sin ( A ) sin ( C ) sin ( A ) sin ( B C ) = sin ( C ) sin ( B C ) \Rightarrow \sin(C) = \dfrac{ac}{b^2-c^2} = \dfrac{\sin(A) \sin(C)}{\sin^{2}(B) - \sin^{2}(C)} = \dfrac{\sin(A)\sin(C)}{\sin(B+C)\sin(B-C)} = \dfrac{\sin(A)\sin(C)}{\sin(A)\sin(B-C)} = \dfrac{\sin(C)}{\sin(B-C)}

sin ( B C ) = 1 \Rightarrow \sin(B-C) = 1

B C = 9 0 \Rightarrow B-C = 90^{\circ}

B = 11 3 B = 113^{\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...