A problem by Clent Pacilan

Level 1

1- cos(x) cos(x)+1 cos (x) -1 -cos(x)-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Munem Shahriar
Mar 6, 2018

sec x sin 2 x 1 + sec x = 1 cos x ( 1 cos 2 x ) 1 + 1 cos x [ 1 cos 2 x = sin 2 x ] = 1 cos 2 x cos x 1 + cos x cos x = ( 1 cos 2 x ) ( cos x ) ( 1 + cos x ) ( cos x ) = 1 cos 2 x 1 + cos x = ( 1 + cos x ) ( 1 cos x ) ( 1 + cos x ) = 1 cos x \begin{aligned} \dfrac{\sec x \sin^2 x}{1 + \sec x} & = \dfrac{\frac 1{\cos x} (1 - \cos^2 x)}{1 + \frac 1{\cos x}} ~~~~~~ [1-\cos^2 x = \sin^2 x] \\ \large & = \dfrac{\frac{1 - \cos^2 x}{\cos x}}{\frac{1+ \cos x}{\cos x}} \\ & = \dfrac{(1 - \cos^2x)(\cos x)}{(1+\cos x)(\cos x)} \\ & = \dfrac{1 - \cos^2 x}{1+\cos x} \\ & = \dfrac{(1+\cos x)(1-\cos x)}{(1+\cos x)} \\ & = \boxed{1 - \cos x} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...