Trigonometry's power (2)

Geometry Level 3

2016 cos 2016 ( x ) 2016 sin 3 ( x ) + 2017 sin 2 ( x ) + 2017 sin ( x ) + 1 \dfrac{2016-\cos^{2016}(x)}{2016\sin^{3}(x)+2017\sin^{2}(x)+2017\sin(x)+1}

Find the maximum value of the above expression.

The maximum does not exist 0 1/2016 2017/2016 1 2016/2017

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jun 24, 2016

2016 cos 2016 ( x ) 2016 sin 3 ( x ) + 2017 sin 2 ( x ) + 2017 sin ( x ) + 1 \dfrac{2016-\cos^{2016}(x)}{2016\sin^{3}(x)+2017\sin^{2}(x)+2017\sin(x)+1}

2016 cos 2016 ( x ) ( 2016 sin ( x ) + 1 ) ( sin 2 ( x ) + sin ( x ) + 1 ) \dfrac{2016-\cos^{2016}(x)}{(2016\sin(x)+1)(\sin^{2}(x)+\sin(x)+1)}

Put sin ( x ) = 1 2016 \sin(x)=-\frac{1}{2016} :

2016 cos 2016 ( x ) ( 1 + 1 ) ( ( 1 2016 ) 2 + ( 1 2016 ) + 1 ) \dfrac{2016-\cos^{2016}(x)}{(-1+1)((-\frac{1}{2016})^2+(-\frac{1}{2016})+1)}

2016 cos 2016 ( x ) 0 \dfrac{2016-\cos^{2016}(x)}{0}

\Rightarrow The maximum does not exist

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...