Sine and Cosine ratios

Geometry Level 2

sin 2 ( 3 A ) sin 2 ( A ) cos 2 ( 3 A ) cos 2 ( A ) = 2 \large \dfrac{\sin^2 (3A)}{\sin^2 (A)}-\dfrac{\cos^2 (3A)}{\cos^2 (A)}=2

cos ( 2 A ) = ? \implies \large \cos (2A)= \ ?

1 4 \frac{1}{4} 1 2 \frac{1}{2} 1 2 \frac{1}{\sqrt{2}} 1 3 \frac{1}{\sqrt{3}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Hem Shailabh Sahu
Apr 20, 2015

L . H . S . = s i n 2 ( 3 A ) s i n 2 ( A ) c o s 2 ( 3 A ) c o s 2 ( A ) L.H.S.=\frac{sin^2(3A)}{sin^2(A)}-\frac{cos^2(3A)}{cos^2(A)}

= s i n 2 ( 3 A ) . c o s 2 ( A ) c o s 2 ( 3 A ) . s i n 2 ( A ) s i n 2 ( A ) . c o s 2 ( A ) =\frac{sin^2(3A).cos^2(A)-cos^2(3A).sin^2(A)}{sin^2(A).cos^2(A)}

= [ s i n ( 3 A ) . c o s ( A ) c o s ( 3 A ) . s i n ( A ) ] . [ s i n ( 3 A ) . c o s ( A ) + c o s ( 3 A ) . s i n ( A ) ] s i n 2 ( A ) . c o s 2 ( A ) =\frac{[sin(3A).cos(A)-cos(3A).sin(A)].[sin(3A).cos(A)+cos(3A).sin(A)]}{sin^2(A).cos^2(A)}

Using the identities : ( i ) s i n ( A ± B ) = s i n A . c o s B ± c o s A . s i n B (i) sin(A \pm B)=sinA.cosB \pm cosA.sinB & ( i i ) s i n ( 2 θ ) = 2. s i n θ . c o s θ (ii) sin(2\theta)=2.sin\theta.cos\theta

= s i n ( 3 A A ) . s i n ( 3 A + A ) s i n 2 ( A ) . c o s 2 ( A ) = s i n ( 2 A ) . s i n ( 4 A ) s i n 2 ( A ) . c o s 2 ( A ) =\frac{sin(3A-A).sin(3A+A)}{sin^2(A).cos^2(A)}=\frac{sin(2A).sin(4A)}{sin^2(A).cos^2(A)}

= s i n ( 2 A ) . ( 2. s i n ( 2 A ) . c o s ( 2 A ) ) s i n 2 ( A ) . c o s 2 ( A ) =\frac{sin(2A).(2.sin(2A).cos(2A))}{sin^2(A).cos^2(A)}

= 8. s i n 2 ( A ) . c o s 2 ( A ) . c o s ( 2 A ) s i n 2 ( A ) . c o s 2 ( A ) = 8. c o s ( 2 A ) =\frac{8.sin^2(A).cos^2(A).cos(2A)}{sin^2(A).cos^2(A)}=8.cos(2A)

R . H . S . = 2 R.H.S.=2

8. c o s ( 2 A ) = 2 c o s ( 2 A ) = 1 4 \Rightarrow 8.cos(2A)=2 \Rightarrow cos(2A)=\boxed{\frac{1}{4}}

:D

Moderator note:

Great!

I just used sin^2(a)+cos^2(a)=1 then completely it became simple. Double angle formula was much more simpler

Aayush Patni - 6 years, 1 month ago

Yup I too did it the same way.Great....

Raushan Sharma - 6 years, 1 month ago

An easier method..... Sin2(3A)/sin2(A) - cos23A/cosA=2 LHS =(3sinA-4sin3A)2/sin2A - (4cos3A-3cosA)2/cos2A =sin2A(3-4sin2A)2/sin2A - cos2A(4cos2A-3)2/cos2A =(3-4sinA)2 – (4cos2A-3)2 =(3-4 sin sq.A + 4cos sq.A-3)(3-4sin sq.A-4cos sq.A + 3) =4(cos sq.A-sin sq.A)(6-4) 4(cos2A)(2)=2 Cos2A=1/4

Manisha Bhosley - 6 years, 1 month ago

Log in to reply

Triple Angle Formula... That was what Pi Han Goh's solution is based on too...

Hem Shailabh Sahu - 6 years, 1 month ago

Log in to reply

Ohh... I didn't see it.. :P I just solved my way and posted the soln. I didn't see Pi Han's soln.

Manisha Bhosley - 6 years, 1 month ago
Pi Han Goh
Apr 20, 2015

Recall the triple angle identities: sin ( 3 A ) = 4 sin 3 A + 3 sin A , cos ( 3 A ) = 4 cos 3 A 3 cos A \sin(3A) = -4\sin^3 A + 3\sin A, \cos(3A) = 4\cos^3 A - 3\cos A .

For simplicity sake, let s = sin ( A ) , c = cos ( A ) s = \sin(A), c = \cos(A) , so s 2 + c 2 = 1 s^2+c^2=1 and we want to find c 2 s 2 c^2 - s^2 .

( 4 s 2 + 3 ) 2 ( 4 c 2 3 ) 2 = 2 16 ( s 4 c 4 ) 24 ( s 2 c 2 ) = 2 16 ( s 2 c 2 ) ( s 2 + c 2 ) 24 ( s 2 c 2 ) = 2 ( 16 24 ) ( s 2 c 2 ) = 2 c 2 s 2 = 2 16 24 = 1 4 \begin{aligned} (-4s^2+ 3)^2 - (4c^2 - 3)^2 &=& 2 \\ 16(s^4-c^4) - 24(s^2-c^2) &=& 2 \\ 16(s^2-c^2)(s^2+c^2) - 24(s^2-c^2) &=& 2 \\ (16-24)(s^2-c^2) &=& 2 \\ c^2-s^2 &=& -\frac {2}{16-24} = \boxed { \frac 1 4 } \end{aligned}

Moderator note:

Yes. Triple Angle Identities is a simple approach.

Chew-Seong Cheong
Apr 20, 2015

sin 2 3 A sin 2 A cos 2 3 A cos 2 A = 2 sin 2 3 A cos 2 A cos 2 3 A sin 2 A sin 2 A cos 2 A = 2 ( sin 3 A cos A cos 3 A sin A ) ( sin 3 A cos A + cos 3 A sin A ) = 2 sin 2 A cos 2 A sin 2 A sin 4 A = 1 2 sin 2 2 A 2 sin 2 2 A cos 2 A = 1 2 sin 2 2 A cos 2 A = 1 4 \dfrac{\sin^2{3A}}{\sin^2{A}}-\dfrac{\cos^2{3A}}{\cos^2{A}} = 2 \quad \Rightarrow \dfrac {\sin^2{3A}\cos^2{A}-\cos^2{3A}\sin^2{A}}{\sin^2{A}\cos^2{A}} = 2 \\ \Rightarrow (\sin{3A}\cos{A}-\cos{3A}\sin{A})(\sin{3A}\cos{A}+\cos{3A}\sin{A}) = 2\sin^2{A}\cos^2{A}\\ \Rightarrow \sin{2A} \sin{4A} = \dfrac{1}{2}\sin^2{2A} \quad \Rightarrow 2\sin^2{2A} \cos{2A} = \dfrac{1}{2}\sin^2{2A} \\ \Rightarrow \cos{2A} = \boxed{\frac{1}{4}}

Moderator note:

The use of difference of squares to compound angle formula nailed the problem. Well done.

I just loved your Solution!

Skanda Prasad - 3 years, 7 months ago
Rocco Dalto
Sep 30, 2016

Using Euler's formula we obtain:

e i 3 θ = ( e i θ ) 3 c o s ( 3 θ ) + i s i n ( 3 θ ) = ( c o s θ + i s i n θ ) 3 = {\bf e^{i3\theta} = (e^{i\theta})^3 \implies cos(3\theta) + isin(3\theta) = (cos\theta + isin\theta)^3 = }

c o s 3 θ + 3 c o s 2 θ s i n θ i 3 c o s θ s i n 2 θ s i n 3 θ i {\bf cos^3\theta + 3cos^2\theta sin\theta i - 3cos\theta sin^2\theta - sin^3\theta i }

c o s ( 3 θ ) = c o s 3 θ 3 c o s θ s i n 2 θ = c o s θ ( c o s 2 θ 3 s i n 2 θ ) = {\bf \implies cos(3\theta) = cos^3\theta - 3cos\theta sin^2\theta = cos\theta(cos^2\theta - 3sin^2\theta) = }

1 2 c o s θ ( 1 + c o s ( 2 θ ) 3 ( 1 c o s ( 2 θ ) ) = {\bf \frac{1}{2} * cos\theta (1 + cos(2\theta) - 3(1 - cos(2\theta)) = }

c o s θ ( 2 c o s ( 2 θ ) 1 ) {\bf cos\theta (2cos(2\theta) - 1) }

s i n 3 θ = s i n θ ( 3 c o s 2 θ s i n 2 θ ) = s i n θ ( 2 c o s ( 2 θ ) + 1 ) {\bf sin3\theta = sin\theta(3cos^2\theta - sin^2\theta) = sin\theta(2cos(2\theta) + 1) }

2 = ( 2 c o s ( 2 A ) + 1 ) 2 ( 2 c o s ( 2 A ) 1 ) 2 = 8 c o s ( 2 A ) {\bf \implies 2 = (2cos(2A) + 1)^2 - (2cos(2A) - 1)^2 = 8cos(2A) \implies }

c o s ( 2 A ) = 1 4 {\bf cos(2A) = \frac{1}{4} }

Otto Bretscher
Apr 21, 2015

The triple angle and double angle identities give sin 3 A = ( sin A ) ( 3 4 sin 2 A ) = ( sin A ) ( 2 cos 2 A + 1 ) \sin{3A}=(\sin{A)}(3-4\sin^2{A})=(\sin{A})(2\cos{2A}+1) and cos 3 A = ( cos A ) ( 4 cos 2 A 3 ) = ( cos A ) ( 2 cos 2 A 1 ) \cos{3A}=(\cos{A})(4\cos^2{A}-3)=(\cos{A})(2\cos{2A}-1) .

Thus ( sin 3 A sin A ) 2 ( cos 3 A cos A ) 2 = ( 2 cos 2 A + 1 ) 2 ( 2 cos 2 A 1 ) 2 (\frac{\sin{3A}}{\sin{A}})^2- (\frac{\cos{3A}}{\cos{A}})^2 =(2\cos{2A}+1)^2-(2\cos{2A}-1)^2 = 8 cos 2 A = 2 =8\cos{2A}=2 and cos 2 A = 1 4 \cos{2A}=\boxed{\frac{1}{4}}

Moderator note:

The addition of double angle identities certainly did simplify the work. Great job!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...