Trigonotegral

Calculus Level 5

0 1 sin ( tan 1 x ) cos 2 ( tan 1 x ) + 4 x 2 x d x \large \displaystyle \int _{ 0 }^{ 1 }{ \dfrac { \sin { (\tan ^{ -1 }{ x } )\sqrt { \cos ^{ 2 }{ (\tan ^{ -1 }{ x } ) } +4{ x }^{ 2 } } } }{ x } } \, dx

The integral shown above can be written as A π B A-\dfrac { \pi }{ B } , where A A and B B are integers. Find the value of A + B A+B .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rui-Xian Siew
Nov 14, 2015

sin ( tan 1 x ) cos ( tan 1 x ) = tan ( tan 1 x ) = x , sin ( tan 1 x ) x = cos ( tan 1 x ) 1 cos 2 ( tan 1 x ) = x 2 cos 2 ( tan 1 x ) cos 2 ( tan 1 x ) = 1 1 + x 2 cos 2 ( tan 1 x ) d x = d x 1 + x 2 l e t y = tan 1 ( x ) , t h e n d y = d x 1 + x 2 = cos 2 ( tan 1 x ) d x I = 0 1 sin ( tan 1 x ) cos 2 ( tan 1 x ) + 4 x 2 x d x = 0 1 cos ( tan 1 x ) cos 2 ( tan 1 x ) + 4 x 2 d x = tan 1 0 tan 1 1 cos 2 ( y ) + 4 tan 2 ( y ) cos ( y ) d y = 0 π 4 1 + 4 tan 2 ( y ) sec 2 ( y ) d y = 0 π 4 1 + 4 tan 2 ( y ) + 4 tan 4 ( y ) d y = 0 π 4 1 + 2 tan 2 ( y ) d y = 0 π 4 2 sec 2 ( y ) 1 d y = 2 tan ( π 4 ) π 4 = 2 π 4 2 + 4 = 6 \frac { \sin { (\tan ^{ -1 }{ x } ) } }{ \cos { (\tan ^{ -1 }{ x } ) } } =\tan { (\tan ^{ -1 }{ x } )=x } ,\\ \frac { \sin { (\tan ^{ -1 }{ x } ) } }{ x } =\cos { (\tan ^{ -1 }{ x } ) } \\ 1-\cos ^{ 2 }{ (\tan ^{ -1 }{ x) } } ={ x }^{ 2 }\cos ^{ 2 }{ (\tan ^{ -1 }{ x) } } \\ \cos ^{ 2 }{ (\tan ^{ -1 }{ x) } } =\frac { 1 }{ 1+{ x }^{ 2 } } \Rightarrow \cos ^{ 2 }{ (\tan ^{ -1 }{ x) } } dx=\frac { dx }{ 1+{ x }^{ 2 } } \\ let\quad y=\quad \tan ^{ -1 }{ (x) } \quad ,\quad then\quad dy=\frac { dx }{ 1+{ x }^{ 2 } } =\cos ^{ 2 }{ (\tan ^{ -1 }{ x)\quad dx } } \\ \\ I=\int _{ 0 }^{ 1 }{ { \frac { { \sin { (\tan ^{ -1 }{ x } )\sqrt { \cos ^{ 2 }{ (\tan ^{ -1 }{ x } ) } +4{ x }^{ 2 } } } } }{ x } } } dx\\ \quad =\int _{ 0 }^{ 1 }{ \cos { (\tan ^{ -1 }{ x } )\sqrt { \cos ^{ 2 }{ (\tan ^{ -1 }{ x } )+4{ x }^{ 2 } } } } } dx\\ \quad =\int _{ \tan ^{ -1 }{ 0 } }^{ \tan ^{ -1 }{ 1 } }{ \frac { \sqrt { \cos ^{ 2 }{ (y)+4\tan ^{ 2 }{ (y) } } } }{ \cos { (y) } } } dy\\ \quad =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \sqrt { 1+4\tan ^{ 2 }{ (y)\sec ^{ 2 }{ (y) } } } dy } \\ \quad =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \sqrt { 1+4\tan ^{ 2 }{ (y)+4\tan ^{ 4 }{ (y) } } } dy } \\ \quad =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ 1+2\tan ^{ 2 }{ (y)\quad dy } } \\ \quad =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ 2\sec ^{ 2 }{ (y) } -1 } \quad dy\\ \quad =2\tan { (\frac { \pi }{ 4 } )-\frac { \pi }{ 4 } } \\ \quad =2-\frac { \pi }{ 4 } \\ \boxed{2+4=6}

I did exactly same!!!

Tanishq Varshney - 5 years, 7 months ago
Guilherme Niedu
May 1, 2017

It is important to note that:

sin ( tan 1 x ) = x x 2 + 1 \large \displaystyle \sin(\tan^{-1} x ) = \frac{x}{\sqrt{x^2+1}} and cos ( tan 1 x ) = 1 x 2 + 1 \large \displaystyle \cos(\tan^{-1} x ) = \frac{1}{\sqrt{x^2+1}}

So:

0 1 sin ( tan 1 x ) cos 2 ( tan 1 x ) + 4 x 2 x d x \large \displaystyle \int_0^1 \frac{\sin(\tan^{-1} x ) \sqrt{\cos^2(\tan^{-1} x ) + 4x^2}}{x} dx

= 0 1 x x 2 + 1 1 x 2 + 1 + 4 x 2 x \large \displaystyle = \int_0^1 \frac{ \frac{x}{\sqrt{x^2+1}} \sqrt{ \frac{1}{x^2+1} + 4x^2 } }{x}

= 0 1 1 x 2 + 1 1 + 4 x 2 + 4 x 4 d x \large \displaystyle = \int_0^1 \frac{1}{x^2+1} \sqrt{1 + 4x^2 + 4x^4} dx

= 0 1 1 x 2 + 1 ( 1 + 2 x 2 ) 2 d x \large \displaystyle = \int_0^1 \frac{1}{x^2+1} \sqrt{(1 + 2x^2)^2} dx

= 0 1 2 x 2 + 1 x 2 + 1 d x \large \displaystyle = \int_0^1 \frac{2x^2+1}{x^2+1}dx

= 0 1 2 1 x 2 + 1 d x \large \displaystyle = \int_0^1 2 - \frac{1}{x^2+1}dx

= 2 arctan ( x ) 0 1 \large \displaystyle = 2 - \arctan(x) \Bigg|_0^1

= 2 π 4 \color{#20A900} \boxed{\large \displaystyle = 2 -\frac{\pi}{4}}

Then:

A = 2 , B = 4 , A + B = 6 \color{#3D99F6} A = 2, B = 4, \boxed{\large \displaystyle A+B = 6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...