Trigonometry! #23

Geometry Level 4

If the inradius, the exradius (of the circle tangent to the side opposite to C C ) and the circumradius of Δ A B C \Delta ABC are 2 2 , 12 12 , and 5 5 respectively, then the measure of C \angle C , in degrees, is

This problem is part of the set Trigonometry .

9 0 90^{\circ} 3 0 30^{\circ} 4 5 45^{\circ} 6 0 60^{\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Feb 7, 2015

Notation: r r is the inradius, r 3 r_{3} is the exradius of the circle with respect to C C and R R is the circumradius.

We know that r = 4 R sin ( A 2 ) sin ( B 2 ) sin ( C 2 ) r=4R\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)

sin ( A 2 ) sin ( B 2 ) sin ( C 2 ) = 1 10 \Rightarrow \sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)=\frac{1}{10} ....................(1)

We also know that r 3 = 4 R cos ( A 2 ) cos ( B 2 ) sin ( C 2 ) r_{3}=4R\cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)

cos ( A 2 ) cos ( B 2 ) sin ( C 2 ) = 3 5 \Rightarrow \cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)=\frac{3}{5} ..........................(2)

Subtracting (1) from (2), we get

cos ( A 2 ) cos ( B 2 ) sin ( C 2 ) sin ( A 2 ) sin ( B 2 ) sin ( C 2 ) = 3 5 1 10 \cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)-\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)=\frac{3}{5}-\frac{1}{10}

sin ( C 2 ) ( cos ( A 2 ) cos ( B 2 ) sin ( A 2 ) sin ( B 2 ) ) = 1 2 \sin\left(\frac{C}{2}\right)\left(\cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)-\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\right)=\frac{1}{2}

sin ( C 2 ) cos ( A + B 2 ) = 1 2 \sin\left(\frac{C}{2}\right)\cos\left(\frac{A+B}{2}\right)=\frac{1}{2}

2 sin ( C 2 ) cos ( C 2 ) = 1 2\sin\left(\frac{C}{2}\right)\cos\left(\frac{C}{2}\right)=1

sin ( C ) = 1 \sin(C)=1

C = 9 0 \therefore\boxed{C=90^{\circ}}

Rifath Rahman
Jan 16, 2015

Let inradius,Circumradius, exradius(opposite to A),exradius(opposite to B) and exradius(opposite to C) be respectively r,R,r1,r2 and r3, We know that incase of right triangles r+r1+r2=r3.....................(1),another theorem for any triangle r1+r2+r3-r=4R or r1+r2+12-2=4 * 5 or r1+r2=10,now putting this to (1) we get 2+10=12 or 12=12,so it satisfies the equation,means C=90 degrees

But why must the converse of the result be true?

Omkar Kulkarni - 6 years, 4 months ago

Log in to reply

Which converse?

Rifath Rahman - 6 years, 4 months ago

Log in to reply

The converse of the result for right angle triangles r + r 1 + r 2 = r 3 r + r_1 + r_2 = r_3

Omkar Kulkarni - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...