n = 0 ∑ ∞ tan − 1 ( 1 + cot − 1 ( n + 1 ) cot − 1 ( n + 2 ) cot − 1 ( n 2 + 3 n + 3 ) )
If the value of the above expression is in the form tan − 1 ( 4 p ) , then find the value of π 2 p .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
S = n = 0 ∑ ∞ tan − 1 ( 1 + cot − 1 ( n + 1 ) cot − 1 ( n + 2 ) cot − 1 ( n 2 + 3 n + 3 ) ) = n = 0 ∑ ∞ tan − 1 ( 1 + α β α − β ) = n = 0 ∑ ∞ tan − 1 ( 1 + tan x tan y tan x − tan y ) = n = 0 ∑ ∞ tan − 1 ( tan ( x − y ) ) = n = 0 ∑ ∞ ( x − y ) = n = 0 ∑ ∞ ( tan − 1 α − tan − 1 β ) = n = 0 ∑ ∞ ( tan − 1 ( cot − 1 ( n + 1 ) ) − tan − 1 ( cot − 1 ( n + 2 ) ) ) = tan − 1 ( cot − 1 1 ) = tan − 1 4 π Let α = cot − 1 ( n + 1 ) and β = cot − 1 ( n + 2 ) See note below. Let tan x = α and tan y = β
⟹ p = π ⟹ π 2 p = 2
Note:
cot ( α − β ) ⟹ α − β = tan α − tan β 1 + tan α tan β = n + 1 1 − n + 2 1 1 + ( n + 1 ) ( n + 2 ) 1 = n 2 + 3 n + 3 = cot − 1 ( n 2 + 3 n + 3 )