Trigo(sum)mation

Geometry Level 4

n = 0 tan 1 ( cot 1 ( n 2 + 3 n + 3 ) 1 + cot 1 ( n + 1 ) cot 1 ( n + 2 ) ) \displaystyle \sum^{\infty}_{n=0} \tan^{-1} \left( \frac{ \cot^{-1}(n^2+3n+3) }{ 1+\cot^{-1}(n+1)\cot^{-1}(n+2) } \right)

If the value of the above expression is in the form tan 1 ( p 4 ) \tan^{-1}\left(\dfrac{p}{4}\right) , then find the value of 2 p π \dfrac{2p}{\pi} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 31, 2017

S = n = 0 tan 1 ( cot 1 ( n 2 + 3 n + 3 ) 1 + cot 1 ( n + 1 ) cot 1 ( n + 2 ) ) Let α = cot 1 ( n + 1 ) and β = cot 1 ( n + 2 ) = n = 0 tan 1 ( α β 1 + α β ) See note below. = n = 0 tan 1 ( tan x tan y 1 + tan x tan y ) Let tan x = α and tan y = β = n = 0 tan 1 ( tan ( x y ) ) = n = 0 ( x y ) = n = 0 ( tan 1 α tan 1 β ) = n = 0 ( tan 1 ( cot 1 ( n + 1 ) ) tan 1 ( cot 1 ( n + 2 ) ) ) = tan 1 ( cot 1 1 ) = tan 1 π 4 \begin{aligned} S & = \sum_{n=0}^\infty \tan^{-1} \left(\frac {\cot^{-1}(n^2+3n+3)}{1+\cot^{-1}(n+1)\cot^{-1}(n+2)} \right) & \small \color{#3D99F6} \text{Let }\alpha = \cot^{-1} (n+1) \text{ and } \beta = \cot^{-1} (n+2) \\ & = \sum_{n=0} ^\infty \tan^{-1} \left(\frac {\color{#3D99F6}\alpha - \beta}{1+\alpha \beta} \right) & \small \color{#3D99F6} \text{See note below.} \\ & = \sum_{n=0} ^\infty \tan^{-1} \left(\frac {\tan x - \tan y}{1+\tan x \tan y} \right) & \small \color{#3D99F6} \text{Let }\tan x = \alpha \text{ and } \tan y = \beta \\ & = \sum_{n=0} ^\infty \tan^{-1} \left(\tan (x -y) \right) \\ & = \sum_{n=0} ^\infty (x -y) \\ & = \sum_{n=0} ^\infty \left( \tan^{-1} \alpha -\tan^{-1} \beta \right) \\ & = \sum_{n=0} ^\infty \left( \tan^{-1} \left(\cot^{-1}(n+1)\right) -\tan^{-1} \left(\cot^{-1}(n+2)\right) \right) \\ & = \tan^{-1} \left(\cot^{-1}1\right) \\ & = \tan^{-1} \frac \pi 4 \end{aligned}

p = π 2 p π = 2 \implies p = \pi \implies \dfrac {2p}\pi = \boxed{2}


Note:

cot ( α β ) = 1 + tan α tan β tan α tan β = 1 + 1 ( n + 1 ) ( n + 2 ) 1 n + 1 1 n + 2 = n 2 + 3 n + 3 α β = cot 1 ( n 2 + 3 n + 3 ) \small \begin{aligned} \cot (\alpha - \beta) & = \frac {1+\tan \alpha \tan \beta}{\tan \alpha -\tan \beta} = \frac {1+\frac 1{(n+1)(n+2)}}{\frac 1{n+1}-\frac 1{n+2}} = n^2 + 3n + 3 \\ \implies \alpha - \beta & = \cot^{-1}(n^2+3n+3) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...