Trinomial Mystery 2

Algebra Level 3

If a + b + c = 1 a+b+c=1 , a 2 + b 2 + c 2 = 2 a^{2}+b^{2}+c^{2}=2 , and a 3 + b 3 + c 3 = 3 a^{3}+b^{3}+c^{3}=3 , what is a 5 + b 5 + c 5 = ? a^{5}+b^{5}+c^{5}= ?

Source: Extreme Algebra Question (#patience)


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let P n = a n + b n + c n P_n = a^n + b^n + c^n , where n n is a positive integer; and S 1 = a + b + c S_1 = a+b+c , S 2 = a b + b c + c a S_2 = ab + bc + ca , and S 3 = a b c S_3 = abc . Using Newton's sum or Newton's identities as follows:

P 1 = S 1 = a + b + c = 1 P 2 = S 1 P 1 2 S 2 = ( 1 ) ( 1 ) 2 S 2 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = ( 1 ) ( 2 ) + 1 2 ( 1 ) + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = ( 1 ) ( 3 ) + 1 2 ( 2 ) + 1 6 ( 1 ) = 25 6 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 = ( 1 ) ( 25 6 ) + 1 2 ( 3 ) + 1 6 ( 2 ) = 6 \begin{aligned} P_1 & = S_1 = a+ b+ c = 1 \\ P_2 & = S_1P_1 - 2S_2 = (1)(1) - 2S_2 = 2 & \small \color{#3D99F6} \implies S_2 = - \frac 12 \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = (1)(2) + \frac 12 (1) + 3S_3 = 3 & \small \color{#3D99F6} \implies S_3 = - \frac 16 \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 = (1)(3) + \frac 12 (2) + \frac 16(1) = \frac {25}6 \\ P_5 & = S_1P_4 - S_2P_3 + S_3P_2 = (1)\left(\frac {25}6 \right) + \frac 12 (3) + \frac 16(2) = \boxed 6 \end{aligned}

Same way!!!

Aaghaz Mahajan - 2 years ago
Anjali Dang
Jun 5, 2019

To begin with, let's write down the equations:

a + b + c = 1 a+b+c=1 ••• 1 \boxed{1}

a 2 + b 2 + c 2 = 2 a^{2}+b^{2}+c^{2}=2 ••• 2 \boxed{2}

a 3 + b 3 + c 3 = 3 a^{3}+b^{3}+c^{3}=3 ••• 3 \boxed{3}

Let's approach the problem by trying to reach a 5 + b 5 + c 5 a^{5}+b^{5}+c^{5} by expanding the multiplication of the 2 n d 2^{nd} and 3 r d 3^{rd} equations, grouping the terms, substituting values from the 1 s t 1^{st} equation, and distributing:

( a 2 + b 2 + c 2 ) ( a 3 + b 3 + c 3 ) (a^{2}+b^{2}+c^{2})(a^{3}+b^{3}+c^{3})

= a 5 + a 2 b 3 + a 2 c 3 + a 3 b 2 + b 5 + b 2 c 3 + a 2 c 3 + b 3 c 2 + c 5 =a^{5}+a^{2}b^{3}+a^{2}c^{3}+a^{3}b^{2}+b^{5}+b^{2}c^{3}+a^{2}c^{3}+b^{3}c^{2}+c^{5}

= a 5 + b 5 + c 5 + a 2 b 2 ( a + b ) + b 2 c 2 ( b + c ) + a 2 b 2 ( a + c ) =a^{5}+b^{5}+c^{5}+a^{2}b^{2}(a+b)+b^{2}c^{2}(b+c)+a^{2}b^{2}(a+c)

= a 5 + b 5 + c 5 + a 2 b 2 ( 1 c ) + b 2 c 2 ( 1 a ) + a 2 b 2 ( 1 b ) =a^{5}+b^{5}+c^{5}+a^{2}b^{2}(1-c)+b^{2}c^{2}(1-a)+a^{2}b^{2}(1-b)

= a 5 + b 5 + c 5 + a 2 b 2 + b 2 c 2 + a 2 c 2 a b c ( a b + b c + a c ) = 6 =\boxed{a^{5}+b^{5}+c^{5}+a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}-abc(ab+bc+ac)=6}

In an attempt to produce a b + b c + a c ab+bc+ac , let’s square the 1 s t 1^{st} equation, expand and factor:

( a + b + c ) 2 = 1 2 (a+b+c)^{2}=1^{2}

a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) = 1 a^{2}+b^{2}+c^{2}+2(ab+bc+ac)=1

Let’s substitute the 2 n d 2^{nd} equation and solve for a b + b c + a c ab+bc+ac :

2 + 2 ( a b + b c + a c ) = 1 2+2(ab+bc+ac)=1

Subtract 2 2 from both sides:

2 ( a b + b c + a c ) = 1 2(ab+bc+ac)=-1

Divide both sides by 2 2 :

a b + b c + a c = 1 2 \boxed{ab+bc+ac=-\frac{1}{2}}

To produce a b c abc , let’s raise the 1 s t 1^{st} equation to the 3 r d 3^{rd} power, expand, and factor:

( a + b + c ) 3 = 1 3 (a+b+c)^{3}=1^{3}

a 3 + b 3 + c 3 + 3 ( a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) ) + 6 a b c = 1 a^{3}+b^{3}+c^{3}+3(a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b))+6abc=1

Let’s use the 1 s t 1^{st} equation to substitute values:

a 3 + b 3 + c 3 + 3 ( a 2 ( 1 a ) + b 2 ( 1 b ) + c 2 ( 1 c ) ) + 6 a b c = 1 a^{3}+b^{3}+c^{3}+3(a^{2}(1-a)+b^{2}(1-b)+c^{2}(1-c))+6abc=1

Let’s distribute:

a 3 + b 3 + c 3 + 3 ( a 2 + b 2 + c 2 ( a 3 + b 3 + c 3 ) + 6 a b c = 1 a^{3}+b^{3}+c^{3}+3(a^{2}+b^{2}+c^{2}-(a^{3}+b^{3}+c^{3})+6abc=1

Let’s substitute the 3 r d 3^{rd} equation in:

3 + 3 ( a 2 + b 2 + c 2 ( 3 ) ) + 6 a b c = 1 3+3(a^{2}+b^{2}+c^{2}-(3))+6abc=1

Let’s substitute the 2 n d 2^{nd} equation:

3 + 3 ( ( 2 ) ( 3 ) ) + 6 a b c = 1 3+3((2)-(3))+6abc=1

After simplifying,

6 a b c = 1 6abc=1

Dividing both sides by 6 6 ,

We get a b c = 1 6 \boxed{abc=\frac{1}{6}} .

Let’s produce a 2 b 2 + b 2 c 2 + a 2 c 2 a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2} by squaring this equation we solved earlier, a b + b c + a c = 1 2 ab+bc+ac=-\frac{1}{2} :

( a b + b c + a c ) 2 = ( 1 2 ) 2 (ab+bc+ac)^{2}=(-\frac{1}{2})^{2}

Expanding and factoring,

a 2 b 2 + b 2 c 2 + a 2 c 2 + 2 a b c ( b + a + c ) = 1 4 a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}+2abc(b+a+c)=\frac{1}{4} .

Substituting a b c = 1 6 abc=\frac{1}{6} and the 1 s t 1^{st} equation,

a 2 b 2 + b 2 c 2 + a 2 c 2 + 2 ( 1 6 ) ( 1 ) = 1 4 a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}+2(\frac{1}{6})(1)=\frac{1}{4} .

Simplifying,

a 2 b 2 + b 2 c 2 + a 2 c 2 + 1 3 = 1 4 a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}+\frac{1}{3}=\frac{1}{4} .

Subtracting 1 3 \frac{1}{3} from both sides,

a 2 b 2 + b 2 c 2 + a 2 c 2 = 1 4 1 3 a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}=\frac{1}{4}-\frac{1}{3} .

Simplifying,

a 2 b 2 + b 2 c 2 + a 2 c 2 = 1 12 \boxed{a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}=-\frac{1}{12}} .

Substituting the boxed equations for their respective left-hand sides that are in the equation a 5 + b 5 + c 5 + a 2 b 2 + b 2 c 2 + a 2 c 2 a b c ( a b + b c + a c ) = 6 a^{5}+b^{5}+c^{5}+a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2}-abc(ab+bc+ac)=6 ,

a 5 + b 5 + c 5 + ( 1 12 ) 1 6 ( 1 2 ) = 6 a^{5}+b^{5}+c^{5}+(-\frac{1}{12})-\frac{1}{6}(-\frac{1}{2})=6 .

Simplifying, a 5 + b 5 + c 5 = 6 \boxed{\boxed{a^{5}+b^{5}+c^{5}=6}} .

The quantities a, b, c are the roots of the equation x 3 x^3 - x 2 x^2 - x 2 \dfrac{x}{2} - 1 6 \dfrac{1}{6} =0. Multiplying by x we get a 4 a^4 + b 4 b^4 + c 4 c^4 =coefficient of x in the equation x 4 x^4 - x 3 x^3 - 1 2 \dfrac{1}{2} x 2 x^2 - x 6 \dfrac{x}{6} =0, which is 25 6 \dfrac{25}{6} . Repeating this process once again, we get a 5 a^5 + b 5 b^5 + c 5 c^5 =6

can u try this?

https://brilliant.org/problems/prove-this-looks-easy-huh/

Syed Hamza Khalid - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...