If sinx + s i n 2 x = 1, then the value of [ c o s 1 2 x + 3 c o s 1 0 x + 3 c o s 8 x + c o s 6 x - 1] is
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Also note that you can do this with the expression. cos 1 2 x + 3 cos 1 0 x + 3 cos 8 x + cos 6 x − 1 = cos 6 x ( cos 2 x + 1 ) 3 − 1
mr. pi han goh you go into too much calculation it's not needed!!
given that sinx+(sinx)^2=1 then sinx=1-(sinx)^2=(cosx)^2 then substitute (cosx)^2 in the fining value. before that cubing on the given condition we get (sinx)^3+3(sinx)^4+3(sinx)^5+(sinx)^6=1 ((cosx)^2)^6+3((cosx)^2)^5+3((cosx)^2)^4+((cosx)^2)^3-1=(sinx)^3+3(sinx)^4+3(sinx)^5+(sinx)^6-1=(sinx+(sinx)^2)^3-(1) =1^3-1=0.
Problem Loading...
Note Loading...
Set Loading...
By Quadratic formula,
sin x sin 2 x cos 2 x cos 6 x cos 1 2 x cos 1 0 x cos 8 x = = = = = = = 2 − 1 + 5 2 3 − 5 1 − sin 2 x = 2 5 − 1 ( cos 2 x ) 3 = 5 − 2 ( cos 6 x ) 2 = 9 − 4 5 ( cos 1 2 x ) ÷ cos 2 x = 2 5 5 − 1 1 ( cos 1 0 x ) ÷ cos 2 x = 2 − 3 5 + 7
Add up all the requird terms should give you 0 as the answer.