TRIONGOMETRY

Level pending

If sinx + s i n 2 x sin^2x = 1, then the value of [ c o s 12 x cos^{12}x + 3 c o s 10 x 3cos^{10}x + 3 c o s 8 x 3cos^8x + c o s 6 x cos^6x - 1] is


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Dec 21, 2013

By Quadratic formula,

sin x = 1 + 5 2 sin 2 x = 3 5 2 cos 2 x = 1 sin 2 x = 5 1 2 cos 6 x = ( cos 2 x ) 3 = 5 2 cos 12 x = ( cos 6 x ) 2 = 9 4 5 cos 10 x = ( cos 12 x ) ÷ cos 2 x = 5 5 11 2 cos 8 x = ( cos 10 x ) ÷ cos 2 x = 3 5 + 7 2 \begin{aligned} \sin x & = & \frac {-1 + \sqrt 5} {2} \\ \sin^2 x & = & \frac {3- \sqrt 5}{2} \\ \cos^2 x & = & 1 - \sin^2 x = \frac {\sqrt5 - 1}{2} \\ \cos^6 x & = & ( \cos^2 x)^3 = \sqrt5 - 2 \\ \cos^{12} x & = & ( \cos^6 x)^2 = 9 - 4 \sqrt5 \\ \cos^{10} x & = & ( \cos^{12} x) \div \cos^2 x = \frac {5\sqrt5 - 11}{2} \\ \cos^8 x & = & ( \cos^{10} x) \div \cos^2 x = \frac {-3\sqrt5 +7}{2} \\ \end{aligned}

Add up all the requird terms should give you 0 \boxed{0} as the answer.

Also note that you can do this with the expression. cos 12 x + 3 cos 10 x + 3 cos 8 x + cos 6 x 1 = cos 6 x ( cos 2 x + 1 ) 3 1 \cos^{12}x+3\cos^{10}x+3\cos^8x+\cos^6x-1=\cos^6x(\cos^2x+1)^3-1

Trevor B. - 7 years, 5 months ago

mr. pi han goh you go into too much calculation it's not needed!!

Akash Omble - 7 years, 3 months ago
Vali N
Feb 17, 2014

given that sinx+(sinx)^2=1 then sinx=1-(sinx)^2=(cosx)^2 then substitute (cosx)^2 in the fining value. before that cubing on the given condition we get (sinx)^3+3(sinx)^4+3(sinx)^5+(sinx)^6=1 ((cosx)^2)^6+3((cosx)^2)^5+3((cosx)^2)^4+((cosx)^2)^3-1=(sinx)^3+3(sinx)^4+3(sinx)^5+(sinx)^6-1=(sinx+(sinx)^2)^3-(1) =1^3-1=0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...