Triple cos squared

Geometry Level 4

In the interval [ 0 , 2 π ] [ 0, 2\pi ] , how many solutions are there to

cos 2 x + cos 2 2 x + cos 2 3 x = 1 ? \cos^2 x + \cos^2 2x + \cos^2 3x = 1?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

19 solutions

Ho Wei Haw
Aug 19, 2013

cos 2 x + cos 2 2 x + cos 2 3 x = 1 \cos^2 x + \cos^22x+\cos^23x=1

cos 2 x + ( 2 cos 2 x 1 ) 2 + ( 4 cos 3 x 3 cos x ) 2 = 1 \Rightarrow \cos^2x+(2\cos^2x-1)^2+(4\cos^3x-3\cos x)^2=1

1 + 6 cos 2 x 20 cos 4 x + 16 cos 6 x = 1 \Rightarrow 1+6\cos^2 x-20\cos^4x+16\cos^6x=1

Letting cos 2 x \cos^2 x be y y , we will have

16 y 3 20 y 2 + 6 y = 0 16y^3-20y^2+6y=0

y ( 2 y 1 ) ( 4 y 3 ) = 0 \Rightarrow y(2y-1)(4y-3)=0

y = 0 , y = 1 2 , y = 3 4 \Rightarrow y = 0 , y = \frac{1}{2} ,y =\frac{3}{4}

cos x = 0 , cos x = ± 3 2 , cos x = ± 1 2 \Rightarrow \cos x = 0, \cos x = \pm \frac{\sqrt{3}}{2},\cos x = \pm \frac{1}{\sqrt{2}}

Considering the three cases,

Case 1: cos x = 0

We have x = π 2 \frac{\pi }{2} and 3 π 2 \frac{3\pi }{2} as the solution for the given interval.

Case 2: cos x = ± 3 2 \cos x = \pm \frac{\sqrt{3}}{2}

There are basically 4 solutions to this since we have to take into account all the 4 angles in the 4 quadrants. (The angles are π 6 , 5 π 6 , 7 π 6 , 11 π 6 \frac{\pi}{6},\frac{5\pi}{6},\frac{7\pi}{6},\frac{11\pi}{6} )

Case 3: cos x = ± 1 2 \cos x =\pm \frac{1}{\sqrt{2}}

The same reasoning as case 2. (The angles are π 4 , 3 π 4 , 5 π 4 , 7 π 4 \frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4} )

Summing up the number of solutions, we will have 10.

Moderator note:

Nicely done! This may not be the shortest solution, but it is a very natural one. And well written too.

Try This Approach .. (cos(x))^2 = (1+cos(2x))/2 . The equation becomes (cos 0 + cos 2x + cos 4x + cos 6x = 0). This in turn can be written as (sin(4x) * cos(3x))/(sin(x)) = 0. Hence this gives us 10 solutions. Here is a link on formulating summation sine and cosine series where angles are in A.P.

Rahul Nahata - 7 years, 9 months ago

kind of tedious with expanding but that's the way I did it! Nice

Jian Feng Gao - 7 years, 9 months ago

best solution

jinay patel - 7 years, 9 months ago

good dude

jinay patel - 7 years, 9 months ago

A very neat approach indeed

Animesh Mishra - 5 years, 8 months ago
Jeffrey Robles
Aug 19, 2013

Using the identity c o s ( A + B ) = c o s A c o s B s i n A s i n B cos (A+B)=cos A cos B - sin A sin B , we get c o s 2 x = 2 c o s 2 x 1 cos 2x = 2cos^2 x-1 and c o s 3 x = 4 c o s 3 x 3 c o s x cos 3x= 4cos^3 x-3 cos x

Letting a = c o s x a=cos x , we get a 2 + ( 2 a 2 1 ) 2 + ( 4 a 3 3 a 2 ) 2 = 1 \\ a^2+(2a^2-1)^2+(4a^3-3a^2)^2=1

Simplifying this gives us a 2 ( 2 a 2 1 ) ( 4 a 2 3 ) = 0 a^2(2a^2-1)(4a^2-3)=0 . Thus, there are 5 5 possible values of a, all of which has a magnitude less than 1 1 . Hence, there are also 5 5 possible values for c o s x cos x . In the interval [ 0 , 2 π ] [0,2 \pi ] , each value value of c o s x cos x gives two possible values for x x . Therefore there are 10 10 solutions for the given equation.

Moderator note:

Nice job! The solution is essentially the same as Ho W.'s but written more compactly. Just one detail: each value of c o s cos gives two angles, because these values are not 1. -1.

There's a small typo: ( 4 a 3 3 a 2 ) 2 (4a^3-3a^2)^2 should instead say ( 4 a 3 3 a ) 2 (4a^3-3a)^2 . Otherwise, awesome solution!

Matt Mistele - 7 years, 9 months ago

Oh yeah, yeah. Thanks for the comment Mart. Never saw that error.

Jeffrey Robles - 7 years, 9 months ago

We can rewrite the initial equation to: 1 + cos 2 x + 1 + cos 4 x + 1 + cos 6 x = 2 1+\cos 2x +1+\cos 4x +1+\cos 6x=2

3 + cos 2 x + 2 cos 2 2 x 1 + 4 cos 3 2 x 3 cos 2 x = 2 3+ \cos 2x + 2\cos^2 2x -1 +4\cos^3 2x -3 \cos 2x=2

cos 2 x ( 2 cos 2 x 1 ) ( cos 2 x + 1 ) = 0 \cos 2x (2\cos 2x -1)(\cos 2x +1)=0

This will lead to 3 cases:

Case 1: cos 2 x = 0 \cos 2x=0 , there are 4 roots in the interval [0, 2 π 2\pi ]: π 4 , 3 π 4 , 5 π 4 , 7 π 4 \frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4} .

Case 2: 2 cos 2 x 1 = 0 2 \cos 2x -1=0 , there are 4 roots in the interval [0, 2 π 2\pi ]: π 6 , 11 π 6 , 5 π 6 , 7 π 6 \frac{\pi}{6},\frac{11\pi}{6},\frac{5\pi}{6},\frac{7\pi}{6} .

Case 3: cos 2 x + 1 = 0 \cos 2x +1=0 , there are 2 roots in the interval [0, 2 π 2\pi ]: π 2 , 3 π 2 \frac{\pi}{2},\frac{3\pi}{2} .

Overall, there are 10 roots in the interval [0, 2 π 2\pi ].

i think you made a mistake

Abhijeeth Babu - 7 years, 9 months ago
Vikram Waradpande
Aug 20, 2013

cos 2 x + cos 2 2 x + cos 2 3 x = 1 2 cos 2 x + 2 cos 2 2 x + 2 cos 2 3 x = 2 cos 2 x + cos 4 x + cos 6 x = 1 2 cos 2 x cos 4 x + cos 4 x = 1 cos 4 x ( 2 cos 2 x + 1 ) = 1 ( 2 c o s 2 2 x 1 ) ( 2 c o s 2 x + 1 ) = 1 2 c o s 3 2 x + c o s 2 x c o s 2 x = 0 cos 2 x ( 2 cos 2 2 x + cos 2 x 1 ) = 0 cos 2 x ( 2 cos 2 x 1 ) ( cos 2 x + 1 ) = 0 ( cos 2 x 1 ) ( 4 c o s 2 x 3 ) ( c o s 2 x ) = 0 \cos^2x + \cos^22x + \cos^23x = 1 \\ \implies 2\cos^2x + 2\cos^22x + 2\cos^23x = 2 \\ \implies \cos 2x + \cos 4x + \cos 6x = -1 \\ \implies 2\cos2x\cos4x + \cos4x = -1 \\ \implies \cos4x(2\cos2x + 1) = -1 \\ \implies (2cos^22x -1)(2cos2x+1) = -1 \\ \implies 2cos^32x+cos^2x - cos2x = 0 \\ \implies \cos2x(2\cos^22x+\cos2x -1) = 0 \\ \implies \cos2x(2\cos2x-1)(\cos2x+1) = 0 \\ \implies (\cos^2x-1)(4cos^2x-3)(cos^2x) = 0 This gives three cases which tell us cos x = ± 3 4 \cos x = \pm {\frac{\sqrt{3}}{4}} or cos x = 0 \cos x = 0 or cos x = ± 1 \cos x = \pm1 The first case has four solutions, the second has two and the third has four again. So total solutions are 4 + 2 + 4 = 10 \boxed{4+2+4 = 10}

Jubayer Nirjhor
Aug 21, 2013

cos 2 x + cos 2 2 x + cos 2 3 x = 1 \cos^2 x + \cos^2 2x + \cos^2 3x =1

1 + cos 2 x 2 + 1 + cos 4 x 2 + 1 + cos 6 x 2 = 1 \Longrightarrow \frac {1+\cos 2x}{2} + \frac {1+\cos 4x}{2} + \frac {1+ \cos 6x}{2}=1

1 + cos 2 x + 1 + cos 4 x + 1 + cos 6 x = 2 \Longrightarrow 1+\cos 2x + 1+ \cos 4x + 1+ \cos 6x =2

3 + cos 2 x + 2 cos 2 2 x 1 + 4 cos 3 2 x 3 cos 2 x = 2 \Longrightarrow 3 + \cos 2x + 2 \cos^2 2x -1 + 4 \cos^3 2x - 3 \cos 2x =2

cos 2 x ( 2 cos 2 x 1 ) ( cos 2 x + 1 ) = 0 \Longrightarrow \cos 2x (2 \cos 2x-1)(\cos 2x+1)=0

Now we have three cases...

Case 1 : cos 2 x = 0 \cos 2x=0 ... In the interval [ 0 , 2 π ] [0,2\pi] , there are 4 possible zeroes... They are, π 4 , 3 π 4 , 5 π 4 , 7 π 4 \frac {\pi}{4}, \frac {3\pi}{4}, \frac {5\pi}{4}, \frac {7\pi}{4}

Case 2 : 2 cos 2 x 1 = 0 2 \cos 2x-1=0 ... In the interval [ 0 , 2 π ] [0,2\pi] , there are 4 possible zeroes... They are, π 6 , 5 π 6 , 7 π 6 , 11 π 6 \frac {\pi}{6}, \frac {5\pi}{6}, \frac {7\pi}{6}, \frac {11\pi}{6}

Case 3 : cos 2 x + 1 = 0 \cos 2x + 1=0 ... In the interval [ 0 , 2 π ] [0,2\pi] , there are 2 possible zeroes... They are, π 2 , 3 π 2 \frac {\pi}{2}, \frac {3\pi}{2}

Hence, there are total 4 + 4 + 2 = 10 4+4+2 = 10 solutions in the interval [ 0 , 2 π ] [0,2\pi]

Therefore, the required answer is 10 \fbox {10}

Raj Magesh
Jun 8, 2015

cos 2 x + cos 2 2 x + cos 2 3 x = 1 \cos^2 x + \cos^2 2x + \cos^2 3x =1

( 2 cos 2 x 1 ) + ( 2 cos 2 2 x 1 ) + ( 2 cos 3 x 1 ) = 1 (2\cos^2 x -1) + (2\cos^2 2x -1) + (2\cos^3 x -1) = -1

cos 2 x + cos 4 x + cos 6 x + cos 0 = 0 \cos 2x + \cos 4x + \cos 6x + \cos 0 = 0

2 cos 3 x cos x + 2 cos 2 3 x = 0 2\cos 3x \cos x + 2\cos^2 3x = 0

2 cos 3 x ( cos x + cos 3 x ) = 0 2 \cos 3x (\cos x + \cos 3x) = 0

4 cos x cos 2 x cos 3 x = 0 4 \cos x \cos 2x \cos 3x = 0

cos x = 0 \cos x=0 leads to the solutions x = π 2 x = \dfrac{\pi}{2} and x = 3 π 2 x=\dfrac{3\pi}{2} .

cos 2 x = 0 \cos 2x = 0 leads to the solutions x = π 4 x=\dfrac{\pi}{4} , x = 3 π 4 x=\dfrac{3\pi}{4} , x = 5 π 4 x=\dfrac{5\pi}{4} and x = 7 π 4 x=\dfrac{7\pi}{4} .

cos 3 x = 0 \cos 3x = 0 leads to the solutions x = π 6 x=\dfrac{\pi}{6} , x = 3 π 6 x=\dfrac{3\pi}{6} , x = 5 π 6 x=\dfrac{5\pi}{6} , x = 7 π 6 x=\dfrac{7\pi}{6} , x = 9 π 6 x=\dfrac{9\pi}{6} and x = 11 π 6 x=\dfrac{11\pi}{6} .

However, some of these solutions are actually repeated, so ignoring these, we obtain 10 \boxed{10} solutions for the given expression.

Really neat and short solution...unlike mine...

pranav jangir - 5 years, 7 months ago
Revanth Gumpu
Aug 18, 2013

Solve for x: cos^2(x)+cos^2(2 x)+cos^2(3 x) = 1 Rewrite the left hand side. Simplify trigonometric functions: 1+6 cos^2(x)-20 cos^4(x)+16 cos^6(x) = 1 Simplify 1+6 cos^2(x)-20 cos^4(x)+16 cos^6(x) = 1 by making a substitution. Simplify and substitute y = cos^2(x): 16 cos^6(x)-20 cos^4(x)+6 cos^2(x)+1 = 1+6 cos(x)^2-20 (cos(x)^2)^2+16 (cos(x)^2)^3 = 16 y^3-20 y^2+6 y+1 = 1: 16 y^3-20 y^2+6 y+1 = 1 Move everything to the left hand side. Subtract 1 from both sides: 16 y^3-20 y^2+6 y = 0 Factor the left hand side. The left hand side factors into a product with four terms: 2 y (2 y-1) (4 y-3) = 0 Divide both sides by a constant to simplify the equation. Divide both sides by 2: y (2 y-1) (4 y-3) = 0 Solve each term in the product separately. Split into three equations: y = 0 or 2 y-1 = 0 or 4 y-3 = 0 Look at the first equation: Perform back substitution on y = 0. Substitute back for y = cos^2(x): cos^2(x) = 0 or 2 y-1 = 0 or 4 y-3 = 0 Eliminate the exponent. Take the square root of both sides: cos(x) = 0 or 2 y-1 = 0 or 4 y-3 = 0 Solve for x. Take the inverse cosine of both sides: x = pi/2+pi n 1 for n 1 element Z or 2 y-1 = 0 or 4 y-3 = 0 Look at the second equation: Isolate terms with y to the left hand side. Add 1 to both sides: x = pi/2+pi n 1 for n 1 element Z or 2 y = 1 or 4 y-3 = 0 Solve for y. Divide both sides by 2: x = pi/2+pi n 1 for n 1 element Z or y = 1/2 or 4 y-3 = 0 Perform back substitution on y = 1/2. Substitute back for y = cos^2(x): x = pi/2+pi n 1 for n 1 element Z or cos^2(x) = 1/2 or 4 y-3 = 0 Eliminate the exponent on the left hand side. Take the square root of both sides: x = pi/2+pi n 1 for n 1 element Z or cos(x) = 1/sqrt(2) or cos(x) = -1/sqrt(2) or 4 y-3 = 0 Look at the second equation: Solve for x. Take the inverse cosine of both sides: x = pi/2+pi n 1 for n 1 element Z or x = pi/4+2 pi n 2 for n 2 element Z or x = (7 pi)/4+2 pi n 3 for n 3 element Z or cos(x) = -1/sqrt(2) or 4 y-3 = 0 Look at the fourth equation: Solve for x. Take the inverse cosine of both sides:

x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z or x = (5 pi)/4+2 pi n 5 for n 5 element Z or 4 y-3 = 0

Look at the sixth equation: Isolate terms with y to the left hand side. Add 3 to both sides:

x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z

or x = (5 pi)/4+2 pi n 5 for n 5 element Z or 4 y = 3

Solve for y. Divide both sides by 4:

x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z

or x = (5 pi)/4+2 pi n 5 for n 5 element Z or y = 3/4 Perform back substitution on y = 3/4. Substitute back for y = cos^2(x):

x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z

or x = (5 pi)/4+2 pi n 5 for n 5 element Z or cos^2(x) = 3/4

Eliminate the exponent on the left hand side. Take the square root of both sides:

x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z

or x = (5 pi)/4+2 pi n 5 for n 5 element Z or cos(x) = sqrt(3)/2 or cos(x) = -sqrt(3)/2 Look at the sixth equation: Solve for x. Take the inverse cosine of both sides:

x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z

or x = (5 pi)/4+2 pi n 5 for n 5 element Z or x = pi/6+2 pi n 6 for n 6 element Z or x = (11 pi)/6+2 pi n 7 for n 7 element Z or cos(x) = -sqrt(3)/2

Look at the eighth equation: Solve for x. Take the inverse cosine of both sides: Answer: |
| x = pi/2+pi n 1 for n 1 element Z

or x = pi/4+2 pi n 2 for n 2 element Z

or x = (7 pi)/4+2 pi n 3 for n 3 element Z

or x = (3 pi)/4+2 pi n 4 for n 4 element Z

or x = (5 pi)/4+2 pi n 5 for n 5 element Z or x = pi/6+2 pi n 6 for n 6 element Z

or x = (11 pi)/6+2 pi n 7 for n 7 element Z

or x = (5 pi)/6+2 pi n 8 for n 8 element Z or x = (7 pi)/6+2 pi n 9 for n 9 element Z

Finally we have 10 solutions.

Since c o s 2 ( x ) = ( 1 + c o s ( 2 x ) ) / 2 cos^2(x)= (1+cos(2x))/2 , the equation can be written as : c o s ( 2 x ) + c o s ( 4 x ) + c o s ( 6 x ) = 1 cos(2x)+cos(4x)+cos(6x)=-1 ; thus c o s ( 0 ) + c o s ( 2 x ) + c o s ( 4 x ) + c o s ( 6 x ) = 0 cos(0)+cos(2x)+cos(4x)+cos(6x)=0 ; 2 c o s 2 ( x ) + 2 c o s ( x ) c o s ( 5 x ) = 0 2cos^2(x)+2cos(x)cos(5x)=0 ; 2 c o s ( x ) ( c o s ( x ) + c o s ( 5 x ) ) = 0 2cos(x)*(cos(x)+cos(5x))=0 ; 2 c o s ( x ) 2 c o s ( 2 x ) c o s ( 3 x ) ) = 0 2cos(x)*2cos(2x)*cos(3x))=0 ; So, c o s ( x ) = 0 , cos(x)=0, or c o s ( 2 x ) = 0 , cos(2x)=0, or c o s ( 3 x ) = 0 , cos(3x)=0, and the number of solutions in the interval [ 0 , 2 π ] [0,2\pi] is 10;

qiang xiao - 7 years, 9 months ago

Log in to reply

@Qiang

Nice!

Peter Byers - 7 years, 9 months ago

This sounds like Wolfram|Alpha talking...

http://www.wolframalpha.com/input/?i=Reduce%5BCos%5Bx%5D%5E2+%2B+Cos%5B2+x%5D%5E2+%2B+Cos%5B3+x%5D%5E2+%3D%3D+1%2C+x%5D

Louie Tan Yi Jie - 7 years, 9 months ago

Sorry that this is a long solution.

Revanth Gumpu - 7 years, 9 months ago

Log in to reply

Doesn't help that none of it is in latex.

Michael Tong - 7 years, 9 months ago

Anyone have an easier solution?

Vishwa Iyer - 7 years, 9 months ago

Log in to reply

@Vishwa, here's a solution you may like:

For ease of notation, write z = e i x z=e^{ix} . Then

0 = 4 + n = 1 3 ( z n + z n ) 2 = 4 + n = 1 3 ( z 2 n + 2 + z 2 n ) = 1 + n = 3 3 z 2 n 0 =-4+ \sum_{n=1}^{3} (z^n+z^{-n})^2\\ = -4+ \sum_{n=1}^{3} (z^{2n}+2+z^{-2n})\\ =1+ \sum_{n=-3}^{3} z^{2n}

Clearly z = ± 1 z=\pm1 is not a solution. If z ± 1 z\ne\pm1 then multiplying both sides by z z 1 z-z^{-1} gives

0 = z z 1 + z 7 z 7 = 2 I m ( z + z 7 ) 0=z-z^{-1} +z^7-z^{-7} =2 Im ( z+z^{7})

or I m ( z 7 ) = I m ( z ) Im (z^7)=Im(-z) . This gives us two cases, z 7 = z z^7=-z and z 7 = z 1 z^7=z^{-1} . The former equation has 6 unitary solutions, and the latter has 6 not counting the illegal solutions z = ± 1 z=\pm1 . They also have exactly 2 solutions in common, z = ± i z=\pm i . This gives a total of 10 solutions in z z and 10 corresponding solutions in x x . (Note that if z = 1 z=1 were a solution, this would correspond to two different solutions in x x .)

Peter Byers - 7 years, 9 months ago

too long

jinay patel - 7 years, 9 months ago

I just want to ask how much time you took??

Sanjeev Gupta - 5 years, 3 months ago

Log in to reply

I would say a good 18 seconds. Maybe 19 at tops.

Revanth Gumpu - 5 years, 3 months ago

Isn't it too short?

Sanjeev Gupta - 5 years, 3 months ago

Woah, dude. Woah.

Bob Krueger - 7 years, 9 months ago
Matheus Leão
Aug 24, 2013

We know that:

c o s ( 2 x ) = c o s 2 x s i n 2 x = 2 c o s 2 x 1 cos(2x) = {cos}^2x - {sin}^2x = 2{cos}^2x - 1 c o s ( 3 x ) = 4 c o s 3 x 3 c o s x cos(3x) = 4{cos}^3x - 3{cos}x

So:

c o s 2 x + c o s 2 2 x + c o s 2 3 x = {cos}^2x + {cos}^22x + {cos}^23x = c o s 2 x + ( 2 c o s 2 x 1 ) 2 + ( 4 c o s 3 x 3 c o s x ) 2 = 1 {cos}^2x + (2{cos}^2x - 1)^2 + (4{cos}^3x - 3{cos}x)^2 = 1 c o s 2 x + 4 c o s 4 x 4 c o s 2 x + 1 + c o s 2 x ( 4 c o s 2 x 3 ) 2 = 1 {cos}^2x + 4{cos}^4x - 4{cos}^2x + 1 + {cos}^2x(4{cos}^2x - 3)^2 = 1 c o s 2 x ( 16 c o s 4 x 20 c o s 2 x + 6 ) = 0 {cos}^2x(16{cos}^4x - 20{cos}^2x + 6) = 0

Then:

c o s 2 x = 0 {cos}^2x = 0 or 16 c o s 4 x 20 c o s 2 x + 6 = 0 16{cos}^4x - 20{cos}^2x + 6 = 0

If c o s 2 x = 0 c o s x = 0 x = 9 0 {cos}^2x = 0 \Rightarrow {cos}x = 0 \Rightarrow x = 90^\circ or x = 27 0 x = 270 ^\circ

Else if 16 c o s 4 x 20 c o s 2 x + 6 = 0 c o s 2 x = 1 2 16{cos}^4x - 20{cos}^2x + 6 = 0 \Rightarrow {cos}^2x = \frac 12 or c o s 2 x = 3 4 {cos}^2x = \frac 34

If c o s 2 x = 1 2 x = ± 2 2 {cos}^2x = \frac 12 \Rightarrow x = \pm \frac {\sqrt{2}}2 , x can be 4 5 , 13 5 , 22 5 , 31 5 45^\circ, 135 ^\circ, 225 ^\circ, 315 ^\circ

If c o s 2 x = 3 4 x = ± 3 2 {cos}^2x = \frac 34 \Rightarrow x = \pm \frac {\sqrt{3}}2 , x can be 3 0 , 15 0 , 21 0 , 33 0 30^\circ, 150 ^\circ, 210 ^\circ, 330 ^\circ

So, there are 10 solutions.

Ryan Soedjak
Aug 20, 2013

Using the fact that cos 2 x = 2 cos 2 x 1 \cos2x=2\cos^2x-1 and cos 3 x = 4 cos 3 x 3 cos x , \cos3x=4\cos^3x-3\cos x, we can substitute into our equation: cos 2 x + cos 2 2 x + cos 2 3 x = 1 cos 2 x + ( 2 cos 2 x 1 ) 2 + ( 4 cos 3 x 3 cos x ) 2 = 1. \begin{aligned} \cos^2x+\cos^22x+\cos^23x&=&1\\ \cos^2x+(2\cos^2x-1)^2+(4\cos^3x-3\cos x)^2&=&1. \end{aligned} Expanding gives cos 2 x + 4 cos 4 x 4 cos 2 x + 1 + 16 cos 6 x 24 cos 4 x + 9 cos 2 x = 1 16 cos 6 x 20 cos 4 x + 6 cos 2 x = 0. \begin{aligned} \cos^2x+4\cos^4x-4\cos^2x+1+16\cos^6x-24\cos^4x+9\cos^2x&=&1\\ 16\cos^6x-20\cos^4x+6\cos^2x&=&0. \end{aligned} Dividing both sides by 2 2 and factoring yields 16 cos 6 x 20 cos 4 x + 6 cos 2 x = 0 cos 2 x ( 2 cos 2 x 1 ) ( 4 cos 2 x 3 ) = 0. \begin{aligned} 16\cos^6x-20\cos^4x+6\cos^2x&=&0\\ \cos^2x(2\cos^2x-1)(4\cos^2x-3)&=&0. \end{aligned} From here we get that cos 2 x = 0 cos 2 x = 1 2 cos 2 x = 3 4 cos x = 0 cos x = ± 2 2 cos x = ± 3 2 x = π 2 , 3 π 2 x = π 4 , 3 π 4 , x = π 6 , 5 π 6 5 π 4 , 7 π 4 7 π 6 , 11 π 6 \begin{array}{ccc|ccc|ccc} \cos^2x&=&0&\cos^2x&=&\tfrac12&\cos^2x&=&\tfrac34\\ \cos x&=&0&\cos x&=&\pm\tfrac{\sqrt2}{2}&\cos x&=&\pm\tfrac{\sqrt3}{2}\\ x&=&\tfrac\pi2,\tfrac{3\pi}2&x&=&\tfrac\pi4,\tfrac{3\pi}4,&x&=&\tfrac\pi6,\tfrac{5\pi}6\\ &&&&&\tfrac{5\pi}4,\tfrac{7\pi}4&&&\tfrac{7\pi}6,\tfrac{11\pi}6 \end{array} There are a total of 10 \boxed{10} solutions.

every 180 degree there are 5 solution 30,45,90,135,150 degree

Ruslan Abdulgani
Aug 19, 2013

Let z=cos x, z^2+(2z^2-1)^2+(4z^3-3z)^2=1, then we can simplify this equation to: 8z^6-10z^4+3z^2=0, that can be factorized to z^2(4z^2-3)(2z^2-1)=0. The solutions are: z=0, or x= π÷2, 3π÷2, and z=(3/4)^0.5, or x=30°, 330°, and z =-(3/4)^0.5, or x=150°, 210°, and z= +/ - (1/2)^0.5, or x = (45°,315°,135°,225°). So there are in total 10 solutions

Bong Man
Aug 19, 2013

cos^2 x+cos^2 2x+cos^2 3x=1

(1/2)+(1/2)cos2x+(1/2)+(1/2)cos4x(1/2)+(1/2)cos6x=1

cos4x(cos2x+1/2)-1/2=0

(2cos^2 2x -1)(cos2x+1/2)-1/2=0

cos2x(cos^2 2x+cos2x-1)=0

cos2x=0 have 4 solution.

cos2x=1/2 have 4 solution

cos 2x=-1 have 2 solution.

all solutions are 10.

Ron van den Burg
Jan 3, 2018

With cos a x = e a x i + e a x i 2 \cos ax=\frac{e^{axi}+e^{-axi}}{2} the problem becomes 1 4 ( e 2 x i + 2 + e 2 x i + e 2 2 x i + 2 + e 2 2 x i + e 2 3 x i + 2 + e 2 3 x i ) = 1 \displaystyle \frac 1 4 \left( e^{2*xi}+2+e^{-2*xi} + e^{2*2xi}+2+e^{-2*2xi} + e^{2*3xi}+2+e^{-2*3xi} \right) = 1 or e 6 x i + e 4 x i + e 2 x i + e 2 x i + e 4 x i + e 6 x i = 4 6 = 2 \displaystyle e^{6xi}+e^{4xi}+e^{2xi}+e^{-2xi}+e^{-4xi}+e^{-6xi} = 4-6=-2 If we add 1 to the LHS (and the RHS), the LHS becomes a geometric series, so multiplying by sin x = e i x e i x 2 i \sin x=\frac{e^{ix}-e^{-ix}}{2i} , we get e 7 x i e 7 x i 2 i = sin x \displaystyle \frac {e^{7xi}-e^{-7xi}}{2i} = -\sin x and finally sin ( 7 x ) = sin ( x ) \sin(7x)=\sin(-x) . Since we multiplied by sin x \sin x we may have introduced solutions, so the solutions where sin x = 0 \sin x=0 are candidate solutions that we have to check. So we are left with candidate solutions

7 x = x + 2 k π , k Z \displaystyle 7x=-x+2k\pi, k \in {\mathbb Z} or 7 x = π + x + 2 k π , k Z \displaystyle 7x=\pi+x+2k\pi, k \in {\mathbb Z}

Rewritten:

x = k 4 π , k Z \displaystyle x=\frac k 4 \pi, k \in {\mathbb Z} or x = π 6 + k 3 π , k Z \displaystyle x=\frac \pi 6 +\frac k 3 \pi, k \in {\mathbb Z} .

The candidate solutions x = k π x=k\pi aren't solutions to the original question. With taking the domain into considering this leads to the answer: there are 10 \boxed {10} solutions: 1 6 π , 1 4 π , 1 2 π , 3 4 π , 5 6 π , 7 6 π , 5 4 π , 3 2 π , 3 4 π and 11 6 π \frac 16\pi, \frac 14\pi, \frac 12\pi, \frac 34\pi, \frac 56\pi, \frac 76\pi, \frac 54\pi, \frac 32\pi, \frac 34\pi \text{ and } \frac {11}6\pi

Brandon Stocks
Jun 10, 2016

c o s ( 2 x ) = 2 c o s 2 ( x ) 1 cos(2x) = 2 \, cos^{2}(x) - 1

c o s ( 3 x ) = [ e i 3 x + e i 3 x ] / 2 = [ ( e i x ) 3 + ( e i x ) 3 ] / 2 cos(3x) = [ e^{i \cdot 3x} + e^{-i \cdot 3x} ]/2 = [(e^{ix})^{3} + (e^{-ix})^{3} ]/2

Using Euler's Formula the above becomes

c o s ( 3 x ) = c o s 3 ( x ) 3 c o s ( x ) s i n 2 ( x ) cos(3x) = cos^{3}(x) - 3 \, cos(x) \, sin^{2}(x)

These give us

c o s 2 ( x ) + c o s 2 ( 2 x ) + c o s 2 ( 3 x ) = 1 3 c o s 2 ( x ) + 4 c o s 4 ( x ) 6 c o s 4 ( x ) s i n 2 ( x ) + 9 c o s 2 ( x ) s i n 4 ( x ) + c o s 6 ( x ) = 1 cos^{2}(x) + cos^{2}(2x) + cos^{2}(3x) = 1 - 3 \, cos^{2}(x) + 4 \, cos^{4}(x) - 6 \, cos^{4}(x) \, sin^{2}(x) + 9 \, cos^{2}(x) \, sin^{4}(x) + cos^{6}(x) = 1

0 = 3 c o s 2 ( x ) + 4 c o s 4 ( x ) 6 c o s 4 ( x ) s i n 2 ( x ) + 9 c o s 2 ( x ) s i n 4 ( x ) + c o s 6 ( x ) 0 = -3 \, cos^{2}(x) + 4 \, cos^{4}(x) - 6 \, cos^{4}(x) \, sin^{2}(x) + 9 \, cos^{2}(x) \, sin^{4}(x) + cos^{6}(x)

A solution to this is c o s ( x ) = 0 cos(x) = 0 . On the interval [ 0 , 2 π ] [0, 2\pi ] this is x = ( π / 2 , 3 π / 2 ) \large x=(\pi /2, \; 3\pi /2) . If c o s ( x ) 0 cos(x) \neq 0 then you can divide by c o s 2 ( x ) cos^{2}(x)

0 = 3 + 4 c o s 2 ( x ) 6 c o s 2 ( x ) s i n 2 ( x ) + 9 s i n 4 ( x ) + c o s 4 ( x ) 0 = -3 + 4 \, cos^{2}(x) - 6 \, cos^{2}(x) \, sin^{2}(x) + 9 \, sin^{4}(x) + cos^{4}(x)

Substituting s i n 2 ( x ) = 1 c o s 2 ( x ) sin^{2}(x) = 1 - cos^{2}(x) into the above equation for s i n 2 ( x ) sin^{2}(x) it reduces to

0 = 16 c o s 4 ( x ) 20 c o s 2 ( x ) + 6 0 = 16\, cos^{4}(x) - 20 \, cos^{2}(x) + 6 \; \; \; \; \; \; \; Using the Quadratic Formula gives

c o s 2 ( x ) = ( 3 / 4 , 1 / 2 ) cos^{2}(x) = (3/4, \; 1/2) \; \; \; \; \; or

c o s ( x ) = ( 1 2 3 , 1 2 , 1 2 3 , 1 2 ) cos(x) = ( \frac{1}{2} \sqrt{3}, \; \sqrt{ \frac{1}{2} }, \; - \frac{1}{2} \sqrt{3}, \; - \sqrt{ \frac{1}{2} } )

On the interval [ 0 , 2 π ] [0, \; 2 \pi ] each of these four cosine values yield two values of x x . These eight along with the two solutions above make a total of ten solutions. The full solution set is

x = ( π / 2 , 3 π / 2 , π / 6 , π / 4 , 5 π / 6 , 3 π / 4 , 11 π / 6 , 7 π / 4 , 7 π / 6 , 5 π / 4 ) \large x = (\pi /2, \; 3\pi /2, \; \pi /6, \; \pi /4, \; 5 \pi /6, \; 3 \pi /4, \; 11 \pi /6, \; 7 \pi /4, \; 7 \pi /6, \; 5 \pi /4)

Ivan Sekovanić
Aug 20, 2013

To begin with, let us note that

  • cos 2 α = cos 2 α sin 2 α \cos2\alpha=\cos^{2}\alpha - \sin^{2}\alpha
  • cos ( α + β ) = cos α cos β sin α sin β \cos(\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
  • sin 2 a = 2 sin α cos α \sin2a =2 \sin \alpha \cos \alpha

Therefore, if we add 1 1 to both sides of the expression we would get

cos 2 x + 1 = 1 + cos 2 x sin 2 x \cos2x+1=1+\cos^{2}x-\sin^{2}x

Taking into account that sin 2 x + cos 2 x = 1 1 sin 2 x = cos 2 x \sin^{2}x+\cos^{2}x=1 \Rightarrow 1-\sin^{2}x=\cos^{2}x , we may note that

1 + cos 2 2 x = 2 c o s 2 x 1 + c o s 2 2 x 2 = c o s 2 x 1+\cos^{2}2x=2cos^{2}x \Rightarrow \frac{1+cos^{2}2x}{2}=cos^{2}x

Similarly, if instead of x x we replace 2 x 2x or 3 x 3x in the expansion, we may derive that

cos 2 2 x = 1 + c o s 4 x 2 \cos^{2}2x=\frac{1+cos4x}{2} and cos 2 3 x = 1 + c o s 6 x 2 \cos^{2}3x=\frac{1+cos6x}{2} .

Therefore, the initial equation would take the form of

1 + cos 2 x + 1 + cos 4 x + 1 + cos 6 x 2 = 1 \frac{1+\cos2x+1+\cos4x+1+\cos6x}{2}=1 \Rightarrow

1 + cos 2 x + 1 + cos 4 x + 1 + cos 6 x = 2 \Rightarrow 1+\cos2x+1+\cos4x+1+\cos6x=2

Furthermore, let us see that

cos 4 x = cos 2 2 x sin 2 2 x = cos 2 2 x ( 1 cos 2 2 x ) = \cos4x=\cos^{2}2x-\sin^{2}2x=\cos^{2}2x-(1-\cos^{2}2x)=

= 2 cos 2 2 x 1 =2\cos^{2}2x-1

and consequently

cos 6 x = cos ( 2 x + 4 x ) = cos 4 x cos 2 x sin 4 x sin 2 x = \cos6x=\cos(2x+4x)=\cos4x\cos2x-\sin4x\sin2x=

= ( 2 c o s 2 2 x 1 ) cos 2 x 2 sin 2 x cos 2 x sin 2 x = =(2cos^{2}2x-1)\cos2x-2\sin2x\cos2x\sin2x=

= 2 cos 3 2 x cos 2 x 2 sin 2 2 x cos 2 x = =2\cos^{3}2x-\cos2x-2\sin^{2}2x\cos2x=

= 2 cos 3 2 x cos 2 x 2 ( 1 cos 2 2 x ) cos 2 x = =2\cos^{3}2x-\cos2x-2(1-\cos^{2}2x)\cos2x=

= 2 cos 3 2 x cos 2 x 2 cos 2 x + 2 cos 3 2 x = =2\cos^{3}2x-\cos2x-2\cos2x+2\cos^{3}2x=

= 4 cos 3 2 x 3 cos 2 x =4\cos^{3}2x-3\cos2x

Thus, we finally get the equation to the form of

3 + cos 2 x + 2 cos 2 2 x 1 + 4 cos 3 2 x 3 cos 2 x = 2 3+\cos2x+2\cos^{2}2x-1+4\cos^{3}2x-3\cos2x=2 \Rightarrow

4 cos 3 2 x + 2 cos 2 2 x 2 cos 2 x = 0 \Rightarrow 4\cos^{3}2x+2\cos^{2}2x-2\cos2x=0 \Rightarrow

2 cos 3 2 x + cos 2 2 x cos 2 x = 0 \Rightarrow 2\cos^{3}2x+\cos^{2}2x-\cos2x=0 \Rightarrow

cos 2 x ( 2 cos 2 2 x cos 2 x 1 ) = 0 \Rightarrow \cos2x(2\cos^{2}2x-\cos2x-1)=0

Since the only way to get 0 0 from any integer is to multiply it with exactly 0 0 , it is evident that either cos 2 x = 0 \cos2x=0 or 2 cos 2 2 x + cos 2 x 1 = 0 2\cos^{2}2x+\cos2x-1=0 .

However, before we jump to the separate cases, let us have a look at the equation 2 cos 2 2 x + cos 2 x 1 = 0 2\cos^{2}2x+\cos2x-1=0 .

If we were to substitute cos 2 x \cos2x with m m (making sure that 1 m 1 -1\leq m\leq1 ), we would get 2 m 2 + m 1 = 0 2m^{2}+m-1=0 . The roots to this quadratic equation are 1 -1 and 1 2 \frac{1}{2} , which means that if factorized, the equation would take the form of 2 ( x + 1 ) ( x 1 2 = ( x + 1 ) ( 2 x 1 ) 2(x+1)(x-\frac{1}{2}=(x+1)(2x-1) . This is due to the fact that any equation of the form a n x n + a n 1 x n 1 + + a 2 x 2 + a 1 x + a 0 = 0 a_{n}x^n+a_{n-1}x^{n-1}+\ldots +a_{2}x^{2}+a_{1}x+a_{0}=0 can be expressed as a n ( x x n ) ( x x n 1 ) ( x x 2 ) ( x x 1 ) = 0 a_{n}(x-x_{n})(x-x_{n-1})\ldots (x-x_{2})(x-x_{1}) =0 , where x n , x n 1 , x 2 , x 1 x_{n},x_{n-1},\ldots x_{2},x_{1} are the roots of the given equation.

Regardless, by substituting back x x with cos 2 x \cos2x , we get 2 cos 2 2 x + cos 2 x 1 = ( cos 2 x + 1 ) ( 2 cos 2 x 1 ) 2\cos^{2}2x+\cos2x-1=(\cos2x+1)(2\cos2x-1) , which means that

cos 2 x ( cos 2 x + 1 ) ( 2 cos 2 x 1 ) = 0 \cos2x(\cos2x+1)(2\cos2x-1)=0

For this to be true, we must consider all 3 3 cases:

Case 1:

cos 2 x = 0 x = 4 5 + k π \cos2x=0 \Rightarrow x=45^{\circ}+k\pi , where k k is an integer.

This case would be true in the interval of [ 0 , 2 π ] [0,2\pi] for 4 4 different values for x x , which are x 1 = 4 5 = π 4 , x 2 = 13 5 = 3 π 4 , x 3 = 22 5 = 5 π 4 x_{1}=45^{\circ}=\frac{\pi}{4}, x_{2}=135^{\circ}=\frac{3\pi}{4},x_{3}=225^{\circ}=\frac{5\pi}{4} and x 4 = 31 5 = 7 π 4 x_{4}=315^{\circ}=\frac{7\pi}{4} .

Case 2:

2 cos 2 x 1 = 0 cos 2 x = 1 2 2\cos2x-1=0 \Rightarrow \cos2x=\frac{1}{2}

Since in the original equation all of the cos x , cos 2 x \cos x,\cos2x and cos 3 x \cos3x have all been squared, we may include the solutions where cos 2 x = 1 2 \cos2x=-\frac{1}{2} as well, since both solutions would yield the same result. Thus, in the interval [ 0 , 2 π ] [0,2\pi] we are left with 4 4 more solutions which are x 5 = 3 0 = π 6 , x 6 = 15 0 = 5 π 6 , x 7 = 21 0 = 7 π 6 x_{5}=30^{\circ}=\frac{\pi}{6},x_{6}=150^{\circ}=\frac{5\pi}{6},x_{7}=210^{\circ}=\frac{7\pi}{6} and x 8 = 33 0 = 11 π 6 x_{8}=330^{\circ}=\frac{11\pi}{6} .

Case 3:

cos 2 x + 1 = 0 cos 2 x = 1 \cos2x+1=0 \Rightarrow \cos2x=-1 .

Again, since in the original equation all of the cos x , cos 2 x \cos x,\cos2x and cos 3 x \cos3x have all been squared, we may include the solution for cos 2 x = 1 \cos2x=1 as well, since both of the solutions would be yield the same result. Thus, in the interval [ 0 , 2 π ] [0,2\pi] we get 2 2 more solutions which are x 9 = 9 0 = π 2 x_{9}=90^{\circ}=\frac{\pi}{2} and x 10 = 27 0 = 3 π 2 x_{10}=270^{\circ}=\frac{3\pi}{2} .

Furthermore, from all cases we get 4 + 4 + 2 = 10 4+4+2=10 possible solutions, meaning that cos 2 x + cos 2 2 x + cos 2 3 x = 1 \cos^{2}x+\cos^{2}2x+\cos^{2}3x=1 has 10 10 possible solutions for x x in the interval [ 0 , 2 π ] [0,2\pi] .

Therefore, the answer is 10 10 .

Heri Setiyawan
Aug 20, 2013

cos^2 X + cos^2 2X + cos^2 3X = 1 (1)

Because : sin^2 X + cos^2 X = 1

we get,

sin^2 X + sin^2 2X + sin^2 3X = 2 (2)

from Equation (1) and (2): (2) - (1):

(cos^2 X - sin^2 X) + (cos^2 X - sin^2 X) + (cos^2 X - sin^2 X) = -1

cos 2X + cos 4X + cos 6X = -1 (cos 2X + cos 6X) + cos 4X = -1

2 cos 4X cos 2X + cos 4X = -1

cos 4X ( 2 cos 2X + 1) = -1 (2 cos^2 2X - 1) (2 cos 2X + 1) = -1

4 cos^3 2X + 2 cos^2 2X - 2 cos^2 2X -1 = -1 4 cos^3 2X + 2 cos^2 2X - 2 cos^2 2X = 0

2 cos 2X (2 cos 2X - 1) (cos 2X + 1) = 0

So,

cos 2X = 0 or cos 2X = 1/2 or cos 2x = -1

cos 2X = 0, The Solution Set = {1/4 pi, 3/4 pi, 5/4 pi, 7/4 pi}

cos 2X = 1/2, The Solution Set = {1/6 pi, 5/6 pi, 7/6 pi, 11/12 pi}

cos 2X = -1, the Solution Set = {1/2 pi, 3/2 pi}

The Answer = 10

Correction: from Equation (1) and (2): (2) - (1):

(cos^2 X - sin^2 X) + (cos^2 2X - sin^2 2X) + (cos^2 3X - sin^2 3X) = -1

cos 2X + cos 4X + cos 6X = -1

(cos 2X + cos 6X) + cos 4X = -1

2 cos 4X cos 2X + cos 4X = -1

cos 4X ( 2 cos 2X + 1) = -1

(2 cos^2 2X - 1) (2 cos 2X + 1) = -1

4 cos^3 2X + 2 cos^2 2X - 2 cos^2 2X -1 = -1

4 cos^3 2X + 2 cos^2 2X - 2 cos^2 2X = 0

2 cos 2X (2 cos 2X - 1) (cos 2X + 1) = 0

Heri Setiyawan - 7 years, 9 months ago
Vikash Kumar
Aug 20, 2013

cos^2x+cos^2(2x)+cos^2(3x)=1 =>

(1+cos2x)/2+(1+cos4x)/2+(1+cos6x)/2=1 => 1+cos2x+1+cos4x+1+cos6x=2 => 3+cos2x+2cos^2(2x)−1+4cos^3(2x)−3cos2x=2 => cos2x(2cos2x−1)(cos2x+1)=0

now each factor will equal to zero so we have three cases

Case 1: cos2x=0, then in the interval [0,2π]: π/4,3π/4,5π/4,7π/4.

Case 2: 2cos2x−1=0, then in the interval [0,2π]: π/6,11π/6,5π/6,7π/6.

Case 3: cos2x+1=0, then n the interval [0,2π]: π/2,3π/2.

so total 4+4+2=10 roots in the interval [0,2π].

Tilak Patel
Aug 20, 2013

c o s 2 x + c o s 2 2 x + c o s 2 3 x = 1 cos^{2}x + cos^{2}2x + cos^{2}3x = 1

c o s 2 x + ( 2 c o s 2 x 1 ) 2 + ( 4 c o s 3 x 3 c o s x ) 2 = 1 cos^{2}x + (2cos^{2}x - 1)^{2} + (4cos^{3}x - 3cosx)^{2} = 1

c o s 2 x + 4 c o s 4 4 c o s 2 x + 1 + 16 c o s 6 x 24 c o s 4 x + 9 c o s 2 x = 1 cos^{2}x + 4cos^{4} - 4cos^{2}x + 1 + 16cos^{6}x - 24cos^{4}x + 9cos^{2}x = 1

16 c o s 6 x 20 c o s 4 x + 6 c o s 2 x = 0 16cos^{6}x - 20cos^{4}x + 6cos^{2}x = 0

Case 1

For c o s 2 x = 0 cos^{2}x = 0

x = π 2 , 3 π 2 x = \frac{\pi}{2} , \frac{3\pi}{2}

Case 2

For c o s 2 x 0 cos^{2}x ≠ 0

16 c o s 4 x 20 c o s 2 x + 6 = 0 16cos^{4}x - 20cos^{2}x + 6 = 0

( 2 c o s 2 x 1 ) ( 4 c o s 2 x 3 ) = 0 (2cos^{2}x -1)(4cos^{2}x - 3)= 0

hence , c o s x = π 6 , 5 π 6 , 7 π 6 , 11 π 6 , π 4 , 3 π 4 , 5 π 4 , 7 π 4 cosx = \frac{\pi}{6} , \frac{5\pi}{6} , \frac{7\pi}{6} , \frac{11\pi}{6} , \frac{\pi}{4} , \frac{3\pi}{4}, \frac{5\pi}{4} , \frac{7\pi}{4}

hence number of solutions are 10

Louie Tan Yi Jie
Aug 19, 2013

Do trigonometric addition:

x cos 2 + ( 2 x ) cos 2 + ( 3 x ) cos 2 = 1 16 x cos 6 20 ( x cos 4 ) + 6 x cos 2 x \cos ^2+(2 x) \cos ^2+(3 x) \cos ^2=1\\ 16 x \cos ^6-20 \left(x \cos ^4\right)+6 x \cos ^2

Substitute y = cos 2 ( x ) y=\cos ^2(x) :

16 y 3 20 y 2 + 6 y = 0 y = { 0 , 1 2 , 3 4 } cos 2 ( x ) = { 0 , 1 2 , 3 4 } 16 y^3-20 y^2+6 y=0\\ y=\left\{0,\frac{1}{2},\frac{3}{4}\right\}\\ \cos ^2(x)=\left\{0,\frac{1}{2},\frac{3}{4}\right\}

We go case by case and find solutions within the interval [ 0 , 2 π ] [0,2 \pi ] .

Case 1: cos 2 ( x ) = 0 \cos ^2(x)=0

cos 2 ( x ) = 0 cos ( x ) = 0 x = 2 π c 1 ± π 2 x = { π 2 , 3 π 2 } \cos ^2(x)=0\\ \cos (x)=0\\ x=2 \pi c_1\pm \frac{\pi }{2}\\ x=\left\{\frac{\pi }{2},\frac{3 \pi }{2}\right\}

Case 2: cos 2 ( x ) = 1 2 \cos ^2(x)=\frac{1}{2}

cos 2 ( x ) = 1 2 cos ( x ) = ± 1 2 x = { 2 π c 2 ± π 4 , 2 π c 3 ± 3 π 4 } x = { π 4 , 3 π 4 , 5 π 4 , 7 π 4 } \cos ^2(x)=\frac{1}{2}\\ \cos (x)=\pm\frac{1}{\sqrt{2}}\\ x=\left\{2 \pi c_2\pm \frac{\pi }{4},2 \pi c_3\pm \frac{3 \pi }{4}\right\}\\ x=\left\{\frac{\pi }{4},\frac{3 \pi }{4},\frac{5 \pi }{4},\frac{7 \pi }{4}\right\}

Case 3: cos 2 ( x ) = 3 4 \cos ^2(x)=\frac{3}{4}

cos 2 ( x ) = 3 4 cos ( x ) = ± 3 2 x = { 2 π c 4 ± π 6 , 2 π c 5 ± 5 π 6 } x = { π 6 , 5 π 6 , 7 π 6 , 11 π 6 } \cos ^2(x)=\frac{3}{4}\\ \cos (x)=\pm\frac{\sqrt{3}}{2}\\ x=\left\{2 \pi c_4\pm \frac{\pi }{6},2 \pi c_5\pm \frac{5 \pi }{6}\right\}\\ x=\left\{\frac{\pi }{6},\frac{5 \pi }{6},\frac{7 \pi }{6},\frac{11 \pi }{6}\right\}

Hence there are a total of 10 distinct solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...