Triple Inequalities

Algebra Level 5

Given positive real numbers ( x , y , z ) (x,y,z) such that x y + y z + x z = 5 xy + yz + xz = 5 . The minimum value of x 2 y 3 + y 2 z 3 + z 2 x 3 + x + y + z \dfrac{x^2}{y^3} + \dfrac{y^2}{z^3} + \dfrac{z^2}{x^3} + x + y + z

is a b c \frac{ a \sqrt{b} } { c} , where a , b , a, b, and c c are positive integers, gcd ( a , c ) = 1 \gcd(a,c) = 1 , and b b is square free. What is the value of a + b + c a + b + c ?


For more problem maximum and minimum value, click here

Try another problem on my set! Warming Up and More Practice


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 19, 2017

Given x , y , z > 0 x,y,z > 0 with x y + x z + y z = 5 xy + xz + yz = 5 :

If (WILOG) x y z x \le y \le z then x 2 y 2 z 2 x^2 \le y^2 \le z^2 and z 3 y 3 x 3 z^{-3} \le y^{-3} \le x^{-3} , and hence x 2 y 3 + y 2 z 3 + z 2 y 3 x 1 + y 1 + z 1 = 5 x y z \frac{x^2}{y^3} + \frac{y^2}{z^3} + \frac{z^2}{y^3} \; \ge \; x^{-1} + y^{-1} + z^{-1} \; = \; \frac{5}{xyz} By the AM/GM inequality, ( x y z ) 2 3 x y + x z + y z 3 = 5 3 (xyz)^{\frac23} \; \le \; \frac{xy + xz + yz}{3} = \tfrac53 and hence, putting these together, x 2 y 3 + y 2 z 3 + z 2 x 3 3 3 5 \frac{x^2}{y^3} + \frac{y^2}{z^3} + \frac{z^2}{x^3} \; \ge \; 3\sqrt{\tfrac35} with equality when x = y = z x=y=z . Since ( x y ) 2 + ( x z ) 2 + ( y z ) 2 0 (x-y)^2 + (x-z)^2 + (y-z)^2 \ge 0 we deduce that x 2 + y 2 + z 2 x y + x z + y z x^2 + y^2 + z^2 \ge xy + xz + yz and equality occurs when x = y = z x=y=z . Moreover, ( x + y + z ) 2 3 ( x y + x z + y z ) = 15 (x+y+z)^2 \ge 3(xy + xz + yz) = 15 so that x + y + z 15 x + y + z \ge \sqrt{15} , with equality when x = y = z x=y=z . Thus x 2 y 3 + y 2 z 3 + z 2 x 3 + x + y + z 3 3 5 + 15 = 8 15 5 \frac{x^2}{y^3} + \frac{y^2}{z^3} + \frac{z^2}{x^3} + x + y + z \; \ge \; 3\sqrt{\tfrac35} + \sqrt{15} \; = \; \frac{ 8 \sqrt{15} } { 5} with equality when x = y = z x=y=z . Thus a = 8 a=8 , b = 15 b=15 , c = 5 c=5 , making the answer 8 + 15 + 5 = 28 8+15+5= \boxed{28} .

Nice solution!

Steven Jim - 4 years ago

oh my god. i did same thing. somehow i made mistake. i made some mistake somewhere. nice solution.

Srikanth Tupurani - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...