Triple Integral

Calculus Level 5

Z = e e Z = e e 2 Y = e Y = e 2 X = 2 N + M + 1 ( 1 Z l n ( Z ) l n ( l n ( Z ) ) Y l n ( Y ) ) J = 1 N 1 ( X J M ) ( X J M 1 ) d x d y d z {\bf \int_{Z = e^e}^{Z = e^{e^2}} \int_{Y= e}^{Y = e^2} \int_{X = 2N + M + 1}^{\infty} (\frac{1}{Z * ln(Z) * ln(ln(Z)) * Y * ln(Y)}) \sum_{J = 1}^{N} \frac{1}{(X - J - M){(X - J - M - 1})} \, dx dy dz}

Evaluate the integral above.

Express the result to four decimal places.


The answer is 0.3330.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 14, 2016

U s i n g Using p a r t i a l partial f r a c t i o n fraction f o r for 1 ( X J M ) ( X J M 1 ) {\bf \frac{1}{(X - J - M){(X - J - M - 1})} } w e we o b t a i n : obtain:

1 ( X J M ) ( X J M 1 ) = A X J M + B X J M 1 {\bf \frac{1}{(X - J - M){(X - J - M - 1})} = \frac{A}{X - J - M} + \frac{B}{X - J - M - 1} \implies }

1 = ( A + B ) X ( J + M + 1 ) A ( J + M ) B {\bf 1 = (A + B) * X - (J + M + 1) * A - (J + M) * B \implies }

A + B = 0 {\bf A + B = 0 }

( J + M + 1 ) A + ( J + M ) B = 1 {\bf (J + M + 1) * A + (J + M) * B = -1 } {\bf \implies }

A = 1 {\bf A = -1 } a n d and B = 1 {\bf B = 1 \implies }

J = 1 N 1 ( X J M ) ( X J M 1 ) = {\bf \sum_{J = 1}^{N} \frac{1}{(X - J - M){(X - J - M - 1})} = }

J = 1 N ( 1 X J M 1 1 X J M ) = {\bf \sum_{J = 1}^{N} (\frac{1}{X - J - M - 1} - \frac{1}{X - J - M}) = }

( 1 X M 2 1 X M 1 ) + ( 1 X M 3 1 X M 2 ) {\bf (\frac{1}{X - M - 2} - \frac{1}{X - M - 1}) + (\frac{1}{X - M - 3} - \frac{1}{X - M - 2}) } + ... +

( 1 X M + 1 N 1 X M + 2 N ) + ( 1 X M N 1 X M + 1 N ) + ( 1 X M 1 N 1 X M N ) = {\bf (\frac{1}{X - M + 1 - N} - \frac{1}{X - M + 2 - N}) + (\frac{1}{X - M - N} - \frac{1}{X - M + 1 - N}) + (\frac{1}{X - M - 1 - N} - \frac{1}{X - M - N}) = }

1 X M 1 N 1 X M 1 {\bf \frac{1}{X - M - 1 - N} - \frac{1}{X - M - 1} \implies }

X = 2 N + M + 1 1 ( X J M ) ( X J M 1 ) d x = {\bf \int_{X = 2N + M + 1}^{\infty} \frac{1}{(X - J - M){(X - J - M - 1})} dx = } X = 2 N + M + 1 ( 1 X M 1 N 1 X M 1 ) = {\bf \int_{X = 2N + M + 1}^{\infty} (\frac{1}{X - M - 1 - N} - \frac{1}{X - M - 1}) = }

ln ( 1 N X M 1 ) X = 2 N + M + 1 = l n ( 2 ) {\bf \ln(1 - \frac{N}{X - M - 1})|_{X = 2N + M + 1}^{\infty} = ln(2) \implies }

l n ( 2 ) Y = e Y = e 2 1 / Y l n ( Y ) d y = {\bf ln(2) * \int_{Y = e}^{Y = e^2} \frac{1/Y}{ln(Y)} dy = }

l n ( 2 ) l n ( l n ( y ) ) e e 2 = ( l n ( 2 ) ) 2 {\bf ln(2) * ln(ln(y))|_{e}^{e^2} = (ln(2))^2 \implies }

( l n ( 2 ) ) 2 Z = e e Z = e e 2 ( 1 / ( Z l n ( Z ) ) l n ( l n ( Z ) ) d z = {\bf (ln(2))^2 * \int_{Z = e^e}^{Z = e^{e^2}} \frac{(1/(Z * ln(Z))}{ln(ln(Z))} dz = } ( l n ( 2 ) ) 2 ( l n ( l n ( l n ( Z ) ) e e e e 2 = ( l n ( 2 ) ) 3 {\bf (ln(2))^2 * (ln(ln(ln(Z))|_{e^e}^{e^{e^2}} = (ln(2))^3 }

\therefore Z = e e Z = e e 2 Y = e Y = e 2 X = 2 N + M + 1 ( 1 Z l n ( Z ) l n ( l n ( Z ) ) Y l n ( Y ) ) J = 1 N 1 ( X J M ) ( X J M 1 ) d x d y d z = {\bf \int_{Z = e^e}^{Z = e^{e^2}} \int_{Y= e}^{Y = e^2} \int_{X = 2N + M + 1}^{\infty} (\frac{1}{Z * ln(Z) * ln(ln(Z)) * Y * ln(Y)}) \sum_{J = 1}^{N} \frac{1}{(X - J - M){(X - J - M - 1})} dx dy dz = }

( l n ( 2 ) ) 3 {\bf (ln(2))^3 }

T h e The r e s u l t result t o to f o u r four d e c i m a l decimal p l a c e s places i s is . 3330. .3330.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...