Triple integration problem

Calculus Level 4

Solve the following triple integral:

I = Σ x d x d y d z \large I = \int \int \int_\Sigma x\,dxdydz

where Σ \large \Sigma is the part of space defined by { z = x 2 + y 2 } \{z = x^2 + y^2\} and { 4 x + z = 1 } \{4x + z = 1\} .

25 π -25\pi 5 15 π -5\sqrt{15\pi} 0 0 12 π 12\sqrt\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Roberto Gallotta
Dec 11, 2016

The conditions on Σ \large \Sigma implies that

x 2 + y 2 z 1 4 x x^2 + y^2 \leq z \leq 1 - 4x

so when z = 0 ( x + 2 ) 2 + y 2 = 5 z = 0 \Rightarrow (x+2)^2 + y^2 = 5

Calling γ \gamma this space, we can say that it is γ = { x = ρ cos θ y = ρ sin θ \gamma = \begin{cases} x = \rho\cos\theta \\ y = \rho\sin\theta \end{cases} where ρ [ 0 , 5 ] \rho\in[0,\sqrt{5}] and θ [ 0 , 2 π ] \theta\in[0,2\pi] .

So I I becomes γ ( x 2 + y 2 1 4 x x d z ) = γ x 4 x 2 x 3 x y 2 d x d y \large \int\int_\gamma\left(\int_{x^2+y^2}^{1-4x}x\,dz\right) = \int\int_\gamma x - 4x^2 - x^3 - xy^2\,dx dy

Solving now for ρ \rho and θ \theta :

I = 0 2 π 0 5 ( ρ cos θ 4 ρ 2 cos 2 θ ρ 3 cos 3 θ ρ 3 cos θ sin 2 θ ) ρ d ρ d θ = I = \int_{0}^{2\pi}\int_{0}^{\sqrt{5}} \left( \rho\cos\theta - 4\rho^2\cos^2\theta - \rho^3\cos^3\theta - \rho^3\cos\theta\sin^2\theta \right)\cdot\rho\,d\rho d\theta =

= 0 2 π [ ρ 3 3 cos θ ρ 4 cos 2 θ ρ 5 5 cos 3 θ ρ 5 5 cos θ sin 2 θ ] 0 5 d θ = = \int_{0}^{2\pi}\left[ \frac{\rho^3}{3}\cos\theta - \rho^4\cos^2\theta - \frac{\rho^5}{5}\cos^3\theta - \frac{\rho^5}{5}\cos\theta\sin^2\theta \right]_{0}^{\sqrt{5}}\,d\theta =

= 0 2 π 5 5 3 cos θ 25 cos 2 θ 5 5 cos θ ( cos 2 θ + sin 2 θ ) d θ = = \int_{0}^{2\pi} \frac{5\sqrt{5}}{3}\cos\theta - 25\cos^2\theta - 5\sqrt{5}\cos\theta(\cos^2\theta+\sin^2\theta) \,d\theta =

= 10 5 3 0 2 π cos θ d θ 25 0 2 π cos 2 θ d θ = = -\frac{10\sqrt{5}}{3} \int_{0}^{2\pi} \cos\theta \,d\theta - 25\int_{0}^{2\pi} \cos^2\theta \,d\theta =

= 0 25 ( π ) = 25 π = 0 - 25(\pi) = \boxed{-25\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...