Triple Limit

Calculus Level 3

{ lim x 2 x 2 x 3 8 = 1 a lim x 2 x 2 5 4 x + 10 = 1 b lim x b a x 3 3 x 2 x 2 5 x + 6 = c d \begin{cases} \displaystyle \lim_{x \to 2} \dfrac{x - 2}{x^3 - 8} = \dfrac{1}{a} \\ \displaystyle \lim_{x \to 2} \dfrac{x^2 - 5}{4x + 10} = - \dfrac{1}{b} \\ \displaystyle \lim_{x \to \frac{b}{a}} \dfrac{x^3 - 3x^2}{x^2 - 5x + 6} = - \dfrac{c}{d} \end{cases}

Given the above, find the value of c + d c + d , where c c and d d are positive coprime numbers.


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

lim x 2 x 2 x 3 8 = lim x 2 x 2 ( x 2 ) ( x 2 + 2 x + 4 ) = lim x 2 1 x 2 + 2 x + 4 = 1 12 \displaystyle \lim_{x \to 2} \frac {x-2}{x^3-8} = \lim_{x \to 2} \frac {x-2}{(x-2)(x^2+2x+4)} = \lim_{x \to 2} \frac 1{x^2+2x+4} = \frac 1{12} a = 12 \implies a = 12

lim x 2 x 2 5 4 x + 10 = 1 18 \displaystyle \lim_{x \to 2} \frac {x^2-5}{4x+10} = - \frac 1{18} b = 18 \implies b = 18

lim x b a x 3 3 x 2 x 2 5 x + 6 = lim x 18 12 x 2 ( x 3 ) ( x 2 ) ( x 3 ) = lim x 3 2 x 2 x 2 = 9 4 3 2 2 = 9 6 8 = 9 2 \displaystyle \lim_{x \to \frac ba} \frac {x^3-3x^2}{x^2-5x+6} = \lim_{x \to \frac {18}{12}} \frac {x^2(x-3)}{(x-2)(x-3)} = \lim_{x \to \frac 32} \frac {x^2}{x-2} = \frac {\frac 94}{\frac 32 - 2} = \frac 9{6-8} = - \frac 92 c + d + 20 = 9 + 2 + 20 = 31 \implies c+d+20 = 9+2+20 = \boxed{31}

@Ram Mohith , you have to mention that c c and d d are positive coprime integers. If not there would be infinitely many solutions.

Chew-Seong Cheong - 2 years, 4 months ago

31 not 21 ;)

Peter van der Linden - 2 years, 4 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 2 years, 4 months ago
Jordan Cahn
Feb 6, 2019
  • Taking the limit of the numerator and denominator independently yields the indeterminate form 0 0 \frac{0}{0} . Thus, by L'Hôpital's rule, lim x 2 x 2 x 3 8 = lim x 2 1 3 x 2 = 1 12 \lim_{x\to 2} \frac{x-2}{x^3-8} = \lim_{x\to2}\frac{1}{3x^2} = \frac{1}{12} So a = 12 a=12 .
  • We can take the limit by evaluating the expression at x = 2 x=2 . lim x 2 x 2 5 4 x + 10 = 1 18 \lim_{x\to 2}\frac{x^2-5}{4x+10} = \frac{-1}{18} So b = 18 b=18 .
  • We can again evaluate the expression at x = b / a = 3 / 2 x={}^b\!/\!_a = {}^3\!/\!_2 . lim x 3 / 2 x 3 3 x 2 x 2 5 x + 6 = lim x 3 / 2 x 2 ( x 3 ) ( x 3 ) ( x 2 ) = ( 3 / 2 ) 2 3 / 2 2 = 9 2 \lim_{x\to^3\!/\!_2}\frac{x^3-3x^2}{x^2-5x+6} = \lim_{x\to^3\!/\!_2}\frac{x^2(x-3)}{(x-3)(x-2)} = \frac{\left(^3\!/\!_2\right)^2}{^3\!/\!_2-2} = -\frac{9}{2} Thus c = 9 c=9 , d = 2 d=2 , and c + d + 20 = 9 + 2 + 20 = 31 c+d+20 = 9+2+20 = \boxed{31} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...