Triple System of Equations

Algebra Level 3

α + β + γ = 6 α 3 + β 3 + γ 3 = 87 ( α + 1 ) ( β + 1 ) ( γ + 1 ) = 33 \large \begin{aligned}\alpha+\beta+\gamma&=6 \\\alpha^3+\beta^3+\gamma^3&=87\\ (\alpha+1)(\beta+1)(\gamma+1)&=33 \end{aligned}

Suppose α \alpha , β \beta , and γ \gamma are complex numbers that satisfy the system of equations above.

If 1 α + 1 β + 1 γ = m n \frac1\alpha+\frac1\beta+\frac1\gamma=\tfrac mn for positive coprime integers m m and n n , find m + n m+n .


The answer is 182.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Altizio
Jun 15, 2015

Note that we have

α 3 + β 3 + γ 3 3 α β γ = ( α + β + γ ) ( α 2 + β 2 + γ 2 α β α γ β γ ) = ( α + β + γ ) [ ( α + β + γ ) 2 3 ( α β + α γ + β γ ) ] = ( α + β + γ ) 3 3 ( α + β + γ ) ( α β + α γ + β γ ) 29 α β γ = 72 6 ( α β + α γ + β γ ) . \begin{aligned}\alpha^3+\beta^3+\gamma^3-3\alpha\beta\gamma&=(\alpha+\beta+\gamma)(\alpha^2+\beta^2+\gamma^2-\alpha\beta-\alpha\gamma-\beta\gamma)\\&=(\alpha+\beta+\gamma)[(\alpha+\beta+\gamma)^2-3(\alpha\beta+\alpha\gamma+\beta\gamma)]\\&=(\alpha+\beta+\gamma)^3-3(\alpha+\beta+\gamma)(\alpha\beta+\alpha\gamma+\beta\gamma)\\\implies 29-\alpha\beta\gamma&=72-6(\alpha\beta+\alpha\gamma+\beta\gamma).\end{aligned}

Additionally, expanding the third equation gives 1 + α + β + γ + α β + α γ + β γ + α β γ = 33 , 1+\alpha+\beta+\gamma+\alpha\beta+\alpha\gamma+\beta\gamma+\alpha\beta\gamma=33, which implies α β + α γ + β γ + α β γ = 26. \alpha\beta+\alpha\gamma+\beta\gamma+\alpha\beta\gamma=26. Letting α β + α γ + β γ = p \alpha\beta+\alpha\gamma+\beta\gamma=p and α β γ = q \alpha\beta\gamma=q , we have the system of equations { 29 q = 72 6 p , p + q = 26 \begin{cases}29-q&=72-6p,\\p+q&=26\end{cases} which after solving gives ( p , q ) = ( 69 7 , 113 7 ) (p,q)=(\frac{69}7,\frac{113}7) . Hence 1 α + 1 β + 1 γ = α β + α γ + β γ α β γ = 69 / 7 113 / 7 = 69 113 \dfrac1\alpha+\dfrac1\beta+\dfrac1\gamma=\dfrac{\alpha\beta+\alpha\gamma+\beta\gamma}{\alpha\beta\gamma}=\dfrac{69/7}{113/7}=\dfrac{69}{113} and the requested answer is 69 + 113 = 182 . 69+113=\boxed{182}.

Moderator note:

Nicely done.

Kris Hauchecorne
May 1, 2016

Good choice of variables p , q , r , p , q , r p, q, r, p' , q', r' . Observing the relations between them help to simplify the problem.

Pranshu Gaba - 5 years, 1 month ago
Kelvin Hong
Jul 7, 2018

Assume that S 1 = α + β + γ , S 2 = α β + β γ + γ α , S 3 = α β γ S_1=\alpha+\beta+\gamma, S_2=\alpha\beta+\beta\gamma+\gamma\alpha, S_3=\alpha\beta\gamma , and also P n = α n + β n + γ n P_n=\alpha^n+\beta^n+\gamma^n , we have S 1 = P 1 = 6 , P 3 = 87 , S_1=P_1=6, P_3=87, and S 2 + S 3 = 26 S_2+S_3=26 .

Using Newton's Identity : P n = S 1 P n 1 S 2 P n 2 + S 3 P n 3 P_n=S_1P_{n-1}-S_2P_{n-2}+S_3P_{n-3} , we have P 2 = S 1 2 2 S 2 = 36 2 S 2 \begin{aligned}P_2&=S_1^2-2S_2\\&=36-2S_2\end{aligned}

Considering cubic, we have P 3 = S 1 P 2 S 2 P 1 + 3 S 3 87 = 216 12 S 2 6 S 2 + 3 S 3 6 S 2 S 3 = 43 \begin{aligned}P_3&=S_1P_2-S_2P_1+3S_3\\87&=216-12S_2-6S_2+3S_3\\\therefore 6S_2-S_3&=43\end{aligned} Now we have two equations about S 2 S_2 and S 3 S_3 , we'll get S 2 = 69 7 S_2=\dfrac{69}{7} and S 3 = 113 7 S_3=\dfrac{113}7 after solving the system.

Then the question is ask for 1 α + 1 β + 1 γ = α β + β γ + γ α α β γ = S 2 S 3 = 69 113 \dfrac1\alpha+\dfrac1\beta+\dfrac1\gamma=\dfrac{\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha\beta\gamma}=\dfrac{S_2}{S_3}=\boxed{\dfrac{69}{113}} , the answer is 69 + 113 = 182 69+113=\boxed{182} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...