Triple Tan

Geometry Level 5

[ tan α 2 tan β 2 + 8 + tan β 2 tan γ 2 + 8 + tan γ 2 tan α 2 + 8 ] 2 \large \left[ \sqrt{ \tan \dfrac {\alpha}{2} \tan \dfrac {\beta}{2} + 8} + \sqrt{ \tan \dfrac {\beta}{2} \tan \dfrac {\gamma}{2} + 8} + \sqrt{ \tan \dfrac {\gamma}{2} \tan \dfrac {\alpha}{2} + 8} \right]^2

Triangle A B C ABC has angles α , β , γ \alpha, \beta, \gamma . What is the maximum value of the expression above.


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Jianzhi Wang
May 20, 2014

Firstly, since α + β + γ = 180 \alpha + \beta + \gamma = 180 , then α + β + γ 2 = 90 \frac {\alpha + \beta + \gamma}{2} = 90

Since tan ( α + β 2 ) = cot γ 2 \tan(\frac {\alpha + \beta}{2}) = \cot\frac {\gamma}{2} , we know tan ( α 2 + β 2 ) tan γ 2 = 1 \tan(\frac {\alpha}{2} +\frac {\beta}{2})* \tan\frac {\gamma}{2} = 1 . we will get tan α 2 + tan β 2 1 tan α 2 × tan β 2 × tan γ 2 = 1 \frac { \tan\frac {\alpha}{2} + \tan\frac {\beta}{2}}{1 - \tan\frac {\alpha}{2}\times\tan\frac {\beta}{2}} \times \tan\frac {\gamma}{2} = 1 , which reduces to

tan α 2 × tan β 2 + tan β 2 × tan γ 2 + tan α 2 × tan γ 2 = 1 \tan\frac {\alpha}{2}\times\tan\frac {\beta}{2} + \tan\frac {\beta}{2}\times\tan\frac {\gamma}{2} + \tan\frac {\alpha}{2}\times\tan\frac {\gamma}{2}= 1

Let a = tan α 2 × tan β 2 + 8 a = \tan\frac {\alpha}{2}\times\tan\frac {\beta}{2} +8 , b = tan γ 2 × tan β 2 + 8 b = \tan\frac {\gamma}{2}\times\tan\frac {\beta}{2} +8 , c = tan α 2 × tan γ 2 + 8 c = \tan\frac {\alpha}{2}\times\tan\frac {\gamma}{2} +8 .

We know a + b + c = 1 + 8 + 8 + 8 = 25 a + b + c = 1 + 8 + 8 + 8 = 25

Let X be a + b + c \sqrt {a} + \sqrt {b} + \sqrt {c} , X 2 = a + b + c + 2 × a b + 2 × b c + 2 × a c X^2 = a + b + c + 2\times\sqrt {ab} +2\times\sqrt {bc} + 2\times\sqrt {ac}

Since we are looking for the maximum value, using AM GM inequality, we get : X 2 a + b + c + a + b + b + c + c + a = 75 X^2 \leq a + b + c + a + b +b + c + c + a = 75 .

In this case, the maximum value is obtained when a = b = c a=b=c which reduced to α = β = γ = 6 0 \alpha = \beta = \gamma =60 ^\circ .

How would you generalize to the case when the constants added are not all the same value?

Calvin Lin Staff - 7 years ago
Qi Huan Tan
May 20, 2014

We claim that if a,b,c are angles of a triangle, then tan(a/2)tan(b/2)+tan(b/2)tan(c/2)+tan(c/2)tan(a/2)=1.square root[(x+8)(y+8)]+square roof[(y+8)(z+8)]+square root[(z+8)(x+8)]}.

Using a+b+c=180, the addition formulas and the fact that tan x = cot(90-x), we have

tan(c/2)=cot((a+b)/2)=(1-(tan(a/2))(tan(b/2)))/(tan(a/2)+tan(b/2))---------(I)

By plugging in (I) into the left hand side of the claim to complete the proof of the claim.

Let x=tan(a/2), y=tan(b/2), z=tan(c/2).

The given formula will transform into (square root(x+8)+square root(y+8)+square root(z+8))^2 where x+ y+z=1.

Simplifying, the given formula will become 25+2{square root[(x+8)(y+8)]+square roof[(y+8)(z+8)]+square root[(z+8)(x+8)]}.

By Cauchy-Schwarz inequality and using the fact that x+y+z=1,

square root[(x+8)(y+8)]+square root[(y+8)(z+8)]+square root[(z+8)(x+8)] <= square root{[(x+8)+(y+8)+(z+8)][(y+8)+(z+8)+(x+8)]}=25.

The given formula is smaller than or equal to 25+2(25)=75.

Equality occurs when alpha=beta=gamma=60 degrees.

Please use Latex!!!!!!

ARUNEEK BISWAS - 4 years, 10 months ago
Calvin Lin Staff
May 13, 2014

First, we show that tan α 2 tan β 2 + tan β 2 tan γ 2 + tan γ 2 tan α 2 = 1 \tan \frac {\alpha}{2} \tan \frac {\beta}{2} + \tan \frac {\beta}{2} \tan \frac {\gamma}{2} + \tan \frac {\gamma}{2} \tan \frac {\alpha}{2} = 1 . This follows because

tan α 2 ( tan β 2 + tan γ 2 ) = tan α 2 ( tan β 2 + tan γ 2 ) × 1 tan β 2 tan γ 2 1 tan β 2 tan γ 2 = tan α 2 tan β + γ 2 ( 1 tan β 2 tan γ 2 ) = 1 tan β 2 tan γ 2 \begin{aligned} \tan \frac {\alpha}{2} \left( \tan \frac {\beta}{2} + \tan \frac {\gamma}{2}\right) &= \tan \frac {\alpha}{2} \left( \tan \frac {\beta}{2} + \tan \frac {\gamma}{2} \right) \times \frac { 1 - \tan \frac {\beta}{2} \tan \frac {\gamma}{2} } {1 - \tan \frac {\beta}{2} \tan \frac {\gamma}{2}} \\ &= \tan \frac {\alpha}{2} \tan \frac {\beta+\gamma}{2} \left(1- \tan \frac {\beta}{2} \tan \frac {\gamma}{2} \right) \\ &=1- \tan \frac {\beta}{2} \tan \frac {\gamma}{2} \\ \end{aligned}

Hence, by AM-GM (or Cauchy-Schwarz), we know that ( A + B + C ) 2 3 ( A + B + C ) (\sqrt{A} + \sqrt{B} + \sqrt{C})^2 \leq 3(A + B + C) , so the expression is less than or equal to 3 ( tan α 2 tan β 2 + 8 + tan β 2 tan γ 2 + 8 + tan γ 2 tan α 2 + 8 ) = 75 3( \tan \frac {\alpha}{2} \tan \frac {\beta}{2} +8 + \tan \frac {\beta}{2} \tan \frac {\gamma}{2} + 8+ \tan \frac {\gamma}{2} \tan \frac {\alpha}{2} + 8 ) = 75 .

Equality holds when A = B = C = 2 π 3 A=B=C = \frac {2\pi}{3} .

i solved this problem using Titu's lemma it is much easier

A Former Brilliant Member - 4 years, 7 months ago

Log in to reply

Great! Can you add your solution?

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

i have posted it

A Former Brilliant Member - 4 years, 7 months ago
Mark Hennings
Jul 24, 2016

By standard identities: sin 1 2 α = ( s b ) ( s c ) b c cos 1 2 α = s ( s a ) b c \sin\tfrac12\alpha = \sqrt{\frac{(s-b)(s-c)}{bc}} \qquad \qquad \cos\tfrac12\alpha = \sqrt{\frac{s(s-a)}{bc}} (and similarly), so that tan 1 2 α = ( s b ) ( s c ) s ( s a ) \tan\tfrac12\alpha \; = \; \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} and similarly. Thus tan 1 2 α tan 1 2 β = s c s \tan\tfrac12\alpha\tan\tfrac12\beta \; = \; \frac{s-c}{s} and similarly. We are being asked to maximize (over all triangles) ( 9 2 a a + b + c + 9 2 b a + b + c + 9 2 c a + b + c ) 2 \left(\sqrt{9 - \frac{2a}{a+b+c}} + \sqrt{9 - \frac{2b}{a+b+c}} + \sqrt{9 - \frac{2c}{a+b+c}}\right)^2 This (by a simple application of Cauchy-Schwarz) has a maximum value of 75 75 when a = b = c a=b=c .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...