Triple Tangents

Geometry Level 2

In A B C \triangle ABC , ( tan A + tan B ) 2 = 19 (\tan A + \tan B)^ {2} = 19 and tan 3 A + tan 3 B = 47 \tan^ {3} A + \tan^ {3} B = 47 .

Find the value of ( cot ( C 2 ) + tan C csc C + 0.071 ) (\cot \left(\dfrac {C}{2}\right) + \tan C - \csc C + 0.071) .

Give your answer to 3 decimal places.


The answer is 2.976.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 30, 2020

Given that ( tan A + tan B ) 2 = tan 2 A + 2 tan A tan B + tan 2 B = 19 . . . ( 1 ) (\tan A + \tan B)^2 = \tan^2 A + 2\tan A \tan B + \tan^2 B = 19 \ \ ...(1) and tan A + tan B = 19 \implies \tan A + \tan B = \sqrt{19} . Also

tan 3 A + tan 3 B = 47 ( tan A + tan B ) ( tan 2 A tan A tan B + tan 2 B ) = 47 tan 2 A tan A tan B + tan 2 B = 47 19 . . . ( 2 ) \begin{aligned} \tan^3 A + \tan^3 B & = 47 \\ (\tan A + \tan B)(\tan^2 A - \tan A \tan B + \tan^2 B) & = 47 \\ \implies \tan^2 A - \tan A \tan B + \tan^2 B & = \frac {47}{\sqrt{19}} & ...(2) \end{aligned}

Then ( 1 ) ( 2 ) : 3 tan A tan B = 19 47 19 tan A tan B = 19 19 47 3 19 (1)-(2): \ \ 3 \tan A \tan B = 19-\dfrac {47}{\sqrt{19}} \implies \tan A \tan B = \dfrac {19\sqrt{19}-47}{3\sqrt{19}} . And we have:

tan C = tan ( π A B ) = tan ( A + B ) = tan A + tan B 1 tan A tan B = 19 19 19 47 3 19 1 2.506333648 C 1.191161652 rad \begin{aligned} \tan C & = \tan (\pi - A - B) = - \tan (A+B) = - \frac {\tan A + \tan B}{1-\tan A\tan B} = \frac {\sqrt{19}}{\frac {19\sqrt{19}-47}{3\sqrt{19}}-1} \approx 2.506333648 \\ \implies \angle C & \approx 1.191161652 \text{ rad} \end{aligned}

Therefore cot C 2 + tan C csc C + 0.071 2.976 \cot \dfrac C2 + \tan C - \csc C + 0.071 \approx \boxed{2.976} .

N. Aadhaar Murty
Aug 30, 2020

Let Ω = tan C \Omega = \tan C .

We have, ( tan A + tan B ) 3 = tan 3 A + tan 3 B + 3 tan A tan B ( tan A + tan B (\tan A + \tan B)^ {3} = \tan^ {3} A + \tan^ {3} B + 3 \tan A \cdot \tan B(\tan A + \tan B ) = = 1 9 3 2 19^ {\frac {3}{2}} .

Substituting values and solving for ( tan A tan B ) (\tan A \cdot \tan B) gives us tan A tan B = 2.739 \tan A \cdot \tan B = 2.739 . Also, we know that A + B + C = π A + B+ C = \pi . So, by the triple tangent identity (see below) , tan A + tan B + tan C = tan A tan B tan C \tan A+ \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C . Therefore,

Ω + 19 = 2.739 × Ω \Omega + \sqrt {19} = 2.739 \times \Omega \Rightarrow Ω = tan C = 2.506 \Omega = \tan C = \boxed {2.506} . Now, using the half angle formulas (see below), cot ( C 2 ) = 1 + cos C 1 cos C = 1 + cos C sin C = csc C + cot C \cot (\frac {C}{2}) = \sqrt {\frac {1 + \cos C}{1 - \cos C}} = \frac {1 + \cos C}{\sin C} = \csc C + \cot C .

So we can conclude that, cot ( C 2 ) csc C + tan C + 0.071 = cot C + tan C + 0.071 = 1 2.506 + 2.506 + 0.071 = 2.976 \cot (\frac {C}{2}) - \csc C + \tan C + 0.071 = \cot C + \tan C + 0.071 = \frac {1}{2.506} + 2.506 + 0.071 = \boxed {2.976}

References :

Triple tangent identity

Half angle formulas

Why introduce θ \theta , ψ \psi , and ϕ \phi , when A A , B B , and C C would do. Why the + 0.071 +0.071 ? No need to complicate the matter. I have edited the question and your solution.

Chew-Seong Cheong - 9 months, 2 weeks ago

Log in to reply

I made a small mistake while doing the final computation and couldn't figure out how to report the problem (hence the 0.071). Thanks for fixing it :), but I can't see the edits.

N. Aadhaar Murty - 9 months, 2 weeks ago

Log in to reply

I thought I have changed your solution with A A , B B and C C

Chew-Seong Cheong - 9 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...