In △ A B C , ( tan A + tan B ) 2 = 1 9 and tan 3 A + tan 3 B = 4 7 .
Find the value of ( cot ( 2 C ) + tan C − csc C + 0 . 0 7 1 ) .
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let Ω = tan C .
We have, ( tan A + tan B ) 3 = tan 3 A + tan 3 B + 3 tan A ⋅ tan B ( tan A + tan B ) = 1 9 2 3 .
Substituting values and solving for ( tan A ⋅ tan B ) gives us tan A ⋅ tan B = 2 . 7 3 9 . Also, we know that A + B + C = π . So, by the triple tangent identity (see below) , tan A + tan B + tan C = tan A ⋅ tan B ⋅ tan C . Therefore,
Ω + 1 9 = 2 . 7 3 9 × Ω ⇒ Ω = tan C = 2 . 5 0 6 . Now, using the half angle formulas (see below), cot ( 2 C ) = 1 − cos C 1 + cos C = sin C 1 + cos C = csc C + cot C .
So we can conclude that, cot ( 2 C ) − csc C + tan C + 0 . 0 7 1 = cot C + tan C + 0 . 0 7 1 = 2 . 5 0 6 1 + 2 . 5 0 6 + 0 . 0 7 1 = 2 . 9 7 6
References :
Why introduce θ , ψ , and ϕ , when A , B , and C would do. Why the + 0 . 0 7 1 ? No need to complicate the matter. I have edited the question and your solution.
Log in to reply
I made a small mistake while doing the final computation and couldn't figure out how to report the problem (hence the 0.071). Thanks for fixing it :), but I can't see the edits.
Log in to reply
I thought I have changed your solution with A , B and C
Problem Loading...
Note Loading...
Set Loading...
Given that ( tan A + tan B ) 2 = tan 2 A + 2 tan A tan B + tan 2 B = 1 9 . . . ( 1 ) and ⟹ tan A + tan B = 1 9 . Also
tan 3 A + tan 3 B ( tan A + tan B ) ( tan 2 A − tan A tan B + tan 2 B ) ⟹ tan 2 A − tan A tan B + tan 2 B = 4 7 = 4 7 = 1 9 4 7 . . . ( 2 )
Then ( 1 ) − ( 2 ) : 3 tan A tan B = 1 9 − 1 9 4 7 ⟹ tan A tan B = 3 1 9 1 9 1 9 − 4 7 . And we have:
tan C ⟹ ∠ C = tan ( π − A − B ) = − tan ( A + B ) = − 1 − tan A tan B tan A + tan B = 3 1 9 1 9 1 9 − 4 7 − 1 1 9 ≈ 2 . 5 0 6 3 3 3 6 4 8 ≈ 1 . 1 9 1 1 6 1 6 5 2 rad
Therefore cot 2 C + tan C − csc C + 0 . 0 7 1 ≈ 2 . 9 7 6 .