Triple the fun!

Calculus Level 4

If the value of

i = 0 j = 0 k = 0 1 3 i 3 j 3 k \displaystyle \sum_{i = 0}^{\infty } \sum_{j = 0}^{\infty } \sum_{k= 0}^{\infty } \frac{1}{3^{i} 3^{j} 3^{k}}
( i j k ) (i \neq j \neq k)

Can be represented as m n \dfrac {m}{n}

Then find

m × n \displaystyle m \times n

Note : You are asked to find the summation over all ordered triplets of distinct non-negative integers.


The answer is 16848.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ariel Gershon
Oct 17, 2014

First, let's suppose (for the time being) that we only need to sum for values such that i < j < k i < j < k . That is, let's find the following sum: i = 0 j = i + 1 k = j + 1 1 3 i 3 j 3 k \sum_{i=0}^{\infty} \sum_{j = i+1}^{\infty} \sum_{k = j+1}^{\infty} \frac{1}{3^i 3^j 3^k} = i = 0 1 3 i j = i + 1 1 3 j k = j + 1 1 3 k = \sum_{i=0}^{\infty} \frac{1}{3^i} \sum_{j = i+1}^{\infty} \frac{1}{3^j} \sum_{k = j+1}^{\infty} \frac{1}{3^k} = i = 0 1 3 i j = i + 1 1 3 j 1 / 3 j + 1 1 1 / 3 = \sum_{i=0}^{\infty} \frac{1}{3^i} \sum_{j = i+1}^{\infty} \frac{1}{3^j} \frac{1/3^{j+1}}{1 - 1/3} = 1 2 i = 0 1 3 i j = i + 1 1 9 j = \frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{3^i} \sum_{j = i+1}^{\infty} \frac{1}{9^{j}} = 1 2 i = 0 1 3 i 1 / 9 i + 1 1 1 / 9 = \frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{3^i} \frac{1/9^{i+1}}{1-1/9} = 1 16 i = 0 1 2 7 i = 1 16 27 26 = 27 416 = \frac{1}{16} \sum_{i=0}^{\infty} \frac{1}{27^i}= \frac{1}{16} * \frac{27}{26} = \frac{27}{416}

Now all we need to do is multiply this sum by 6, since there are exactly 6 different possibilities for how i , j , k i,j,k are ordered. Therefore, the total sum is 27 416 6 = 81 208 \frac{27}{416} * 6 = \frac{81}{208} . Therefore the answer is 81 208 = 16848 81*208 = \boxed{16848} .

Similar to how I did it. I found 3 ! i = 2 j = 1 i 1 k = 0 j 1 3 ( i + j + k ) 3!\sum_{i=2}^{\infty}\sum_{j=1}^{i-1}\sum_{k=0}^{j-1} 3^{-(i+j+k)} But this is better.

Pratik Shastri - 6 years, 7 months ago
Krishna Sharma
Oct 12, 2014

i = 0 j = 0 k = 0 = [ sum when i,j,k are independent ] 3 × [ sum when any 2 of i,j,k are equal ] + 2 × [ sum when i = j = k ] \displaystyle \sum_{i = 0}^{\infty } \sum_{j = 0}^{\infty } \sum_{k = 0}^{\infty } = [\text { sum when i,j,k are independent }] - 3 \times [ \text{sum when any 2 of i,j,k are equal }] +2 \times [\text {sum when i = j = k}]

= i = 0 j = 0 k = 0 1 3 i 3 j 3 k 3 i = 0 k = 0 1 9 i 3 k + 2 i = 0 1 2 7 i \displaystyle \sum_{i =0}^{\infty } \sum_{j =0}^{\infty } \sum_{k =0}^{\infty } \frac{1}{3^{i} 3^{j} 3^{k}} - 3 \sum_{i=0}^{\infty } \sum_{k =0}^{\infty } \frac{1}{9^{i} 3^{k}} + 2\sum_{i =0}^{\infty} \frac{1}{27^{i}}

= ( 3 2 ) 3 3 ( 9 8 ) ( 3 2 ) + 2 ( 27 26 ) \displaystyle \biggl(\frac{3}{2}\biggr)^{3} -3\biggl(\frac{9}{8}\biggr)\biggl(\frac{3}{2}\biggr) + 2\biggl(\frac{27}{26}\biggr)

= 81 208 \displaystyle \frac{81}{208}

81 × 208 = 16848 81 \times 208 = \boxed{16848}

@Krishna Sharma Will you please generalise it For any n number of sigma ?? Thanks.

Karan Shekhawat - 6 years, 7 months ago

Log in to reply

What do you get when you try and generalize his approach?

Do you know how to do

i = 0 j = 0 1 3 i 3 j ? \sum_{i=0} ^ \infty \sum_{j=0} ^ \infty \frac{1}{ 3^i 3^j } ?

Calvin Lin Staff - 6 years, 7 months ago

Log in to reply

This got to be equal to 9 8 \frac{9}{8} if i and j are not equal...

jaiveer shekhawat - 6 years, 5 months ago

Will you please elaborate why 2× when I=j=k

Ujjwal Mani Tripathi - 6 years, 7 months ago
U Z
Oct 12, 2014

clearly we can see that i , j , k are different

instead of solving it we can apply the method we use in

combinatorics , for example to find permutations of telephone

numbers in a telephone directory which do not end with 4

then we do this simple method that is total - numbers ending with 4

Similarly

here y = infinity

t o t a l = ( i = 0 y 1 3 i ) 3 total = ( \sum_{i=0}^y \frac{1}{3^{i}})^{3}

when i = k not equal to j

here

= ( i = 0 y 1 3 2 i ) ( i = 0 y 1 3 j ) = ( \sum_{i=0}^y \frac{1}{3^{2i}})( \sum_{i=0}^y \frac{1}{3^{j}})

= i = 0 y 1 3 2 i ( 3 2 1 3 i = \sum_{i=0}^y \frac{1}{3^{2i}}(\frac{3}{2} - \frac{1}{3^{i}}

= 27 16 27 26 = 135 8.26 = \frac{27}{16} - \frac{27}{26} = \frac{135}{8.26}

Required sum is

= 27 8 27 26 3. 135 8.26 = 81 208 = \frac{27}{8} - \frac{27}{26} - 3. \frac{135}{8.26} = \frac{81}{208}

m.n =16848

very good question Krishna Sharma , enjoyed very much,continue to give such more

Can you explain where you are getting all of these numbers from?

Can you explain better what the approach you are taking is?

How did you jump to "required sum is 27/8-27/26 - 3 * 135/(8 * 26)"?

Calvin Lin Staff - 6 years, 8 months ago

A simple simplification will do like i = 0 j = 0 k = 0 i j k 1 3 i 3 j 3 k = i = 0 j = 0 i j 1 3 i 3 j ( k = 0 1 3 k 1 3 i 1 3 j ) = i = 0 j = 0 i j 1 3 i 3 j ( 1 1 1 3 1 3 i 1 3 j ) = i = 0 j = 0 i j 1 3 i 3 j 3 2 i = 0 j = 0 i j 1 3 2 i 3 j i = 0 j = 0 i j 1 3 i 3 2 j = 3 2 i = 0 1 3 i ( j = 0 1 3 j 1 3 i ) i = 0 1 3 2 i ( j = 0 1 3 j 1 3 i ) i = 0 1 3 i ( j = 0 1 3 2 j 1 3 2 i ) = 3 2 i = 0 1 3 i ( 1 1 1 3 1 3 i ) i = 0 1 3 2 i ( 1 1 1 3 1 3 i ) i = 0 1 3 i ( 1 1 1 9 1 3 2 i ) = 3 2 i = 0 1 3 i ( 3 2 1 3 i ) i = 0 1 3 2 i ( 3 2 1 3 i ) i = 0 1 3 i ( 9 8 1 3 2 i ) = 3 2 i = 0 ( 1 3 i 3 2 1 3 2 i ) i = 0 ( 1 3 2 i 3 2 1 3 3 i ) i = 0 ( 1 3 i 9 8 1 3 3 i ) = 3 2 ( 1 1 1 3 3 2 1 1 1 9 ) ( 1 1 1 9 3 2 1 1 1 27 ) ( 1 1 1 3 9 8 1 1 1 27 ) = 3 2 ( 3 2 3 2 9 8 ) ( 9 8 3 2 27 26 ) ( 3 2 9 8 27 26 ) = 27 8 3 27 16 + 2 27 26 = 2 27 16 3 27 16 + 2 27 26 = 2 27 26 27 16 = 16 27 13 27 2 13 8 = 3 27 2 13 8 \mathop{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}}_{i \neq j \neq k} \frac {1}{3^i3^j3^k}\\ =\mathop{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}}_{i \neq j} \frac{1}{3^i3^j} \left( \sum_{k=0}^{\infty} \frac{1}{3^k} - \frac{1}{3^i} - \frac{1}{3^j} \right)\\ =\mathop{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}}_{i \neq j} \frac{1}{3^i3^j} \left( \frac{1}{1 - \frac{1}{3}} - \frac{1}{3^i} - \frac{1}{3^j} \right)\\ =\mathop{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}}_{i \neq j} \frac{1}{3^i3^j} \frac {3}{2} - \mathop{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}}_{i \neq j} \frac{1}{3^{2i}3^j} - \mathop{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}}_{i \neq j} \frac{1}{3^i3^{2j}}\\ =\frac{3}{2}\sum_{i=0}^{\infty} \frac{1}{3^i} \left( \sum_{j=0}^{\infty} \frac{1}{3^j} - \frac{1}{3^i} \right) - \sum_{i=0}^{\infty} \frac{1}{3^{2i}} \left( \sum_{j=0}^{\infty} \frac{1}{3^j} - \frac{1}{3^i} \right) - \sum_{i=0}^{\infty} \frac{1}{3^i} \left( \sum_{j=0}^{\infty} \frac{1}{3^{2j}} - \frac{1}{3^{2i}} \right)\\ =\frac{3}{2}\sum_{i=0}^{\infty} \frac{1}{3^i} \left( \frac{1}{1 - \frac{1}{3}} - \frac{1}{3^i} \right) - \sum_{i=0}^{\infty} \frac{1}{3^{2i}} \left( \frac{1}{1 - \frac{1}{3}} - \frac{1}{3^i} \right) - \sum_{i=0}^{\infty} \frac{1}{3^i} \left( \frac{1}{1 - \frac{1}{9}} - \frac{1}{3^{2i}} \right)\\ =\frac{3}{2}\sum_{i=0}^{\infty} \frac{1}{3^i} \left( \frac{3}{2} - \frac{1}{3^i} \right) - \sum_{i=0}^{\infty} \frac{1}{3^{2i}} \left( \frac{3}{2} - \frac{1}{3^i} \right) - \sum_{i=0}^{\infty} \frac{1}{3^i} \left( \frac{9}{8} - \frac{1}{3^{2i}} \right)\\ =\frac{3}{2}\sum_{i=0}^{\infty} \left( \frac{1}{3^i} \frac{3}{2} - \frac{1}{3^{2i}} \right) - \sum_{i=0}^{\infty} \left( \frac{1}{3^{2i}} \frac{3}{2} - \frac{1}{3^{3i}} \right) - \sum_{i=0}^{\infty} \left( \frac{1}{3^i} \frac{9}{8} - \frac{1}{3^{3i}} \right)\\ =\frac{3}{2} \left( \frac{1}{1 - \frac{1}{3}} \frac{3}{2} - \frac{1}{1 - \frac{1}{9}} \right) - \left( \frac{1}{1 - \frac{1}{9}} \frac{3}{2} - \frac{1}{1 - \frac{1}{27}} \right) - \left( \frac{1}{1 - \frac{1}{3}} \frac{9}{8} - \frac{1}{1 - \frac{1}{27}} \right)\\ =\frac{3}{2} \left( \frac{3}{2} \frac{3}{2} - \frac{9}{8} \right) - \left( \frac{9}{8} \frac{3}{2} - \frac{27}{26} \right) - \left( \frac{3}{2} \frac{9}{8} - \frac{27}{26} \right)\\ =\frac{27}{8} - \frac{3 * 27}{16} + \frac{2 * 27}{26}\\ =\frac{2 * 27}{16} - \frac{3 * 27}{16} + \frac{2 * 27}{26}\\ =\frac{2 * 27}{26} - \frac{27}{16}\\ =\frac{16 * 27 - 13 * 27}{2 * 13 * 8}\\ =\frac{3 * 27}{2 * 13 * 8}

so the answer is 3 27 2 13 8 = 16848 3 * 27 * 2 * 13 * 8 = 16848

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...