Triple Thunder!

Calculus Level 5
  1. Let F \mathcal F be the collection of functions f : ( 0 , ) R f: (0,\infty) \to \mathbb R such that f ( x + y ) f ( y ) x y |f(x+y)-f(y)|\le \dfrac{x}{y} for all x , y > 0 x,y > 0 . The maximum value of j = 1 10 f ( 2 10 ) f ( 2 j ) \displaystyle \sum_{j=1}^{10}|f(2^{10})-f(2^j)| , for f F f \in \mathcal F , is A ln 2 A\ln2 .
  2. The differentiable function f : ( 0 , ) R f: (0,\infty) \to \mathbb R satisfies the equation f ( x y ) = e x y x y ( e y f ( x ) + e x f ( y ) ) f(xy)=e^{xy-x-y}(e^yf(x)+e^xf(y)) for all x , y > 0 x,y > 0 . If f ( 1 ) = e f'(1)=e , let B = f ( 2 ) B=f(2) .
  3. The differentiable function f : ( 0 , ) R f: (0,\infty) \to \mathbb R , satisfies the equation 2 f ( x ) = f ( x y ) + f ( x y ) 2f(x)=f(xy)+f \left(\dfrac{x}{y}\right) for all x , y > 0 x,y > 0 . If f ( 1 ) = 0 f(1)=0 and f ( 1 ) = 1 f'(1)=1 , let C = f ( 4 ) C=f(4) .

Evaluate A + B + C A+B+C .


The answer is 51.50799776.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 27, 2018
  1. For any function f F f \in \mathcal F , we must have f ( x ) f ( y ) ln x y |f(x) - f(y)| \le \ln\tfrac{x}{y} for all x > y > 0 x > y > 0 . To see this, for any n N n \in \mathbb{N} we put h = x y n h = \tfrac{x-y}{n} and see that f ( x ) f ( y ) = j = 1 n ( f ( y + j h ) f ( y + ( j 1 ) h ) j = 1 n ( f ( y + j h ) f ( y + ( j 1 ) h ) j = 1 n h y + ( j 1 ) h h y j = 1 n 1 1 + ( j 1 ) h y = h y + j = 1 n 1 1 1 + j h y x y n y + 0 ( n 1 ) h y d t 1 + t x y n y + 0 x y y d t 1 + t = x y n y + ln x y \begin{aligned} |f(x) - f(y)| & = \; \left| \sum_{j=1}^n \big(f(y+jh\big) - f\big(y+(j-1)h\big)\right| \\ & \le \; \sum_{j=1}^n \left|\big(f(y+jh\big) - f\big(y+(j-1)h\big)\right| \; \le \; \sum_{j=1}^n \frac{h}{y + (j-1)h} \\ & \le \; \frac{h}{y}\sum_{j=1}^n \frac{1}{1 + (j-1)\frac{h}{y}} \; = \; \frac{h}{y} + \sum_{j=1}^{n-1} \frac{1}{1 + j\frac{h}{y}} \\ & \le \; \frac{x-y}{ny} + \int_0^{(n-1)\frac{h}{y}} \frac{dt}{1+t} \; \le \; \frac{x-y}{ny} + \int_0^{\frac{x-y}{y}}\frac{dt}{1+t} \\ & = \; \frac{x-y}{ny} + \ln\tfrac{x}{y} \end{aligned} We have used here the fact that ( 1 + t ) 1 (1+t)^{-1} is a decreasing function of t t , and hence that the Riemann sum is less than the matching integral. Letting n n \to \infty gives us the result. We also note that the function f 0 ( x ) = ln x f_0(x) = \ln x has the property that f 0 ( x + y ) f 0 ( y ) = ln ( 1 + x y ) x y x , y > 0 |f_0(x+y) - f_0(y)| \; = \; \ln\left(1 + \tfrac{x}{y}\right) \; \le \; \tfrac{x}{y} \hspace{1cm} x,y > 0 so that f 0 F f_0 \in \mathcal F and f 0 ( x ) f 0 ( y ) = ln x y x > y > 0 |f_0(x) - f_0(y)| \; = \; \ln\tfrac{x}{y} \hspace{2cm} x > y > 0 Thus the maximum value A ln 2 A \ln2 is achieved by choosing f = f 0 f=f_0 , and hence A ln 2 = j = 1 10 f 0 ( 2 10 ) f 0 ( 2 j ) = j = 1 10 ln ( 2 10 j ) = j = 0 9 ln 2 j = ln 2 45 = 45 ln 2 A\ln 2 \; = \; \sum_{j=1}^{10}|f_0(2^{10}) - f_0(2^j)| \; = \; \sum_{j=1}^{10} \ln(2^{10-j}) \; = \; \sum_{j=0}^9 \ln 2^j \; = \; \ln 2^{45} \; = \; 45\ln2 and so A = 45 A = 45 .
  2. The transformations g ( x ) = e x f ( x ) g(x) = e^{-x}f(x) for x > 0 x > 0 and h ( x ) = g ( e x ) h(x) = g(e^x) for x R x \in \mathbb{R} lead to the facts that h h is differentiable on R \mathbb{R} and h ( x + y ) = h ( x ) + h ( y ) h(x+y) = h(x)+h(y) for all real x , y x,y . Thus h ( x ) = α x h(x) = \alpha x for real x x , and hence f ( x ) = α e x ln x f(x) = \alpha e^x \ln x for x > 0 x > 0 . Thus f ( x ) = α e x ( ln x + x 1 ) f'(x) = \alpha e^x(\ln x + x^{-1}) , so the requirement that f ( 1 ) = e f'(1) = e tells us that α = 1 \alpha=1 , so that B = f ( 2 ) = e 2 ln 2 B = f(2) = e^2\ln2 . It is worth noting that assuming that f f is continuous is enough to get this result.
  3. Putting y = 1 y=1 , we see that 2 f ( x ) = f ( x 2 ) 2f(x) = f(x^2) . The equation now reads f ( u v ) = f ( u ) + f ( v ) f(uv) = f(u) + f(v) for u , v > 0 u,v > 0 and (since f f is differentiable), f ( x ) = α ln x f(x) = \alpha \ln x for x > 0 x > 0 . Since f ( 1 ) = 1 f'(1)=1 , we deduce that α = 1 \alpha=1 , and so f ( x ) = ln x f(x) = \ln x . Thus C = ln 4 = 2 ln 2 C = \ln4 = 2\ln2 . Again, we only need assume that f f is continuous.

This makes the answer A + B + C = 45 + ( e 2 + 2 ) ln 2 = 51.50799776 A+B+C = 45 + (e^2 + 2)\ln2 = \boxed{51.50799776} .

Rajdeep Brahma
Jun 26, 2018

Relevant wiki: Limits of functions - Problem solving

1 1 . f ( p ) f ( q ) < = |f(p)-f(q)|<= j = 1 n h q + ( j 1 ) h \displaystyle \sum_{j=1}^{n}\frac{h}{q+(j-1)h} (why? try to break f ( p ) f ( q ) f(p)-f(q) into a summation and then use the given property...you will get)( where h = p q n h=\frac{p-q}{n} ) < = h q j = 1 n 1 1 + ( j 1 ) h q <=\frac{h}{q}\displaystyle \sum_{j=1}^{n}\frac{1}{1+(j-1)\frac{h}{q}} = = h q + \frac{h}{q}+ j = 1 n 1 1 1 + j h q \displaystyle \sum_{j=1}^{n-1}\frac{1}{1+j\frac{h}{q}} < = p q n q + l n p q <=\frac{p-q}{nq}+ln\frac{p}{q} which tends to l n p q ln\frac{p}{q} .From here conclude that the function will be f ( x ) = l n x f(x)=ln x and hence answer is 45 l n 2 45ln2 & \& A = 45 A=45 .

2 2 .Put x = y = 1 x=y=1 to get f ( 1 ) = 0 f(1)=0 . f ( x ) f'(x) = lim h 0 f ( x + h ) f ( x ) h \lim_{h\to0} \dfrac{f(x+h)-f(x)}{h} = lim h 0 f ( x . ( 1 + h x ) ) f ( x ) h \lim_{h\to0} \dfrac{f(x.(1+\frac{h}{x}))-f(x)}{h} = lim h 0 f ( x ) ( e h 1 ) + e h 1 + x h x ( f ( 1 + h x ) f ( 1 ) h ) \lim_{h\to0} \dfrac{f(x)(e^h-1)+e^{h-1+x-\frac{h}{x}}(f(1+\frac{h}{x})-f(1)}{h}) = f ( x ) f(x) + e x 1 . f ( 1 ) x \frac{e^{x-1}.f'(1)}{x} .Now you should easily get that 1 x \frac{1}{x} = d ( f ( x ) ) d x ( e x ) \frac{d(f(x))}{dx(e^{x})} .Hence f ( x ) = e x l n x f(x)=e^xln|x| and B = e 2 l n 2 B=e^2ln2 .

3 3 .Let x y = u xy=u & \& x y = v \frac{x}{y}=v . 2 f ( u v ) 2f(\sqrt{uv}) = f ( u ) + f ( v ) f(u)+f(v) .Differentiate w.r.t u u ,we get 2 f ( u v ) 2f'(\sqrt{uv}) * v 2 u \frac{\sqrt{v}}{2\sqrt{u}} = f ( u ) f'(u) .Put u = 1 u=1 and replace v v with t 2 t^2 .. f ( t ) = f'(t)= 1 t \frac{1}{t} .So f ( x ) = l n x f(x)=ln|x| and C = l n 4 C=ln4 .

Lovely question

Md Zuhair - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...