Triple variable sequence

Algebra Level 5

Let a n = x n + y n + z n a_{n} = x^{n}+y^{n}+z^{n} , and a 1 = 2 , a 2 = 6 , a 3 = 14 a_{1}=2, a_{2}=6, a_{3}=14 .

Find the value of a 7 a_{7} .


The answer is 478.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using Newton sum or See this.

We get,

x y + y z + z x = 1 \Rightarrow xy+yz+zx=-1

x y z = 0 \Rightarrow xyz=0

Now, again using Newton sum.

General Formula: For i 3 i \geq 3 .

a i + b i + c i = ( a + b + c ) ( a i 1 + b i 1 + c i 1 ) ( a b + b c + c a ) ( a i 2 + b i 2 + c i 2 + a b c ( a i 3 + b i 3 + c i 3 ) \rightarrow a^i+b^i+c^i=(a+b+c)(a^{i-1}+b^{i-1}+c^{i-1})-(ab+bc+ca)(a^{i-2}+b^{i-2}+c^{i-2}+abc(a^{i-3}+b^{i-3}+c^{i-3})

x 4 + y 4 + z 4 = 2 × 14 + 6 = 34 \Rightarrow x^4+y^4+z^4=2×14+6=34

x 5 + y 5 + z 5 = 2 × 34 + 14 = 82 \Rightarrow x^5+y^5+z^5=2×34+14=82

x 6 + y 6 + z 6 = 2 × 82 + 34 = 198 \Rightarrow x^6+y^6+z^6=2×82+34=198

x 7 + y 7 + z 7 = 2 × 198 + 82 = 478 \Rightarrow x^7+y^7+z^7=2×198+82=\boxed{478}

Perfect solution

Arsan Safeen - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...