Trisect Me

Geometry Level 4

A C D \triangle ACD is a right triangle. C G CG and C B CB are the trisectors of A C D \angle ACD . C B A H CB \perp AH . E B = 1 EB = 1 and A C = 6 AC = 6 . If the area of A C D \triangle ACD is a root of f ( x ) = a x 4 + b x 2 + c f(x) = ax^4 + bx^2 + c , where gcd ( a , b , c ) = 1 , a > 0 (a,b,c)=1, a>0 , submit f ( 13 ) f(13) .


The answer is 74149.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let θ = A C G = G C B = B C D \theta = \angle ACG = \angle GCB = \angle BCD .

A E AE is the height to the hypotenuse of right A B C \triangle ABC , thus, A C 2 = C E C B 36 = C E ( C E + 1 ) C E 2 + C E 36 = 0 C E = 1 + 145 2 \begin{aligned} & A{{C}^{2}}=CE\cdot CB\Rightarrow 36=CE\cdot \left( CE+1 \right) \\ & \Rightarrow C{{E}^{2}}+CE-36=0 \\ & \Rightarrow CE=\dfrac{-1+\sqrt{145}}{2} \\ \end{aligned} By Pythagorean theorem, A B 2 = C B 2 A C 2 = ( C E + E B ) 2 A C 2 = ( 1 + 145 2 + 1 ) 2 6 2 = 1 + 145 2 \begin{aligned} A{{B}^{2}} & =C{{B}^{2}}-A{{C}^{2}} \\ & ={{\left( CE+EB \right)}^{2}}-A{{C}^{2}} \\ & ={{\left( \dfrac{-1+\sqrt{145}}{2}+1 \right)}^{2}}-{{6}^{2}} \\ & =\dfrac{1+\sqrt{145}}{2} \\ \end{aligned} A B = 1 + 145 2 AB=\sqrt{\dfrac{1+\sqrt{145}}{2}} By angle bisector theorem on A B C ABC , A G G B = A C C B A G G B + A G = A C C B + A C A G A B = 1 + 145 2 1 + 145 2 + 6 tan θ = 1 12 + 145 \begin{aligned} & \dfrac{AG}{GB}=\dfrac{AC}{CB}\Rightarrow \dfrac{AG}{GB+AG}=\dfrac{AC}{CB+AC} \\ & \Rightarrow \dfrac{AG}{AB}=\dfrac{\sqrt{\dfrac{1+\sqrt{145}}{2}}}{\dfrac{1+\sqrt{145}}{2}+6} \\ & \Rightarrow \tan \theta =\dfrac{1}{\sqrt{12+\sqrt{145}}} \\ \end{aligned} Finally, for the area A A of A C D \triangle ACD we have A = 1 2 A C A D = 1 2 A C 2 tan 3 θ = 18 3 tan θ tan 3 θ 1 3 tan 2 θ \begin{aligned} A & =\dfrac{1}{2}AC\cdot AD \\ & =\dfrac{1}{2}A{{C}^{2}}\tan 3\theta \\ & =18\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \\ \end{aligned} Substituting, we find A = 9 2 5 2 ( 145 9 ) A=\dfrac{9}{2}\sqrt{\dfrac{5}{2}\left( \sqrt{145}-9 \right)} Consequently, A 2 = 405 8 ( 145 9 ) 8 A 2 + 3645 = 405 145 ( 8 A 2 + 3645 ) 2 = 23783625 64 A 4 + 58320 A 2 10497600 = 0 4 A 4 + 3645 A 2 656100 = 0 \begin{aligned} {{A}^{2}} & =\dfrac{405}{8}\left( \sqrt{145}-9 \right) \\ & \Leftrightarrow 8{{A}^{2}}+3645=405\sqrt{145} \\ & \Leftrightarrow {{\left( 8{{A}^{2}}+3645 \right)}^{2}}=\text{23783625} \\ & \Leftrightarrow 64{{A}^{4}}+58320{{A}^{2}}-10497600=0 \\ & \Leftrightarrow 4{{A}^{4}}+3645{{A}^{2}}-656100=0 \\ \end{aligned} i.e. A A is a root of the polynomial f ( x ) = 4 x 4 + 3645 x 2 656100 f\left( x \right)=4{{x}^{4}}+3645{{x}^{2}}-656100 .

For the answer, f ( 13 ) = 4 × 13 4 + 3645 × 13 2 656100 = 74149 f\left( 13 \right)=4\times {{13}^{4}}+3645\times {{13}^{2}}-656100=\boxed{74149} .

I was beginning to wonder if anyone would explain this one. Well done!

Fletcher Mattox - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...