Trisected Triangle

Geometry Level 4

In acute triangle A B C ABC , O O is an interior point. The perpendiculars from O O to sides B C , C A BC, CA and A B AB intersect the respective sides at D , E D, E and F F . Given that F A = 12 , A E = 8 , E C = 13 FA = 12, AE =8, EC = 13 , C D = 11 , D B = 14 CD = 11, DB = 14 , what is the length of B F BF ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Calvin Lin Staff
May 13, 2014

Applying Pythagorean theorem, we get that A F 2 + C E 2 + B D 2 = O A 2 O F 2 + O C 2 O E 2 + O B 2 O D 2 AF^2 + CE^2 + BD^2 = OA^2-OF^2 + OC^2 - OE^2 + OB^2 - OD^2 and A E 2 + C D 2 + B F 2 = O A 2 O E 2 + O C 2 O D 2 + O B 2 O F 2 AE^2 + CD^2 + BF^2 = OA^2 - OE^2 + OC^2 - OD^2 + OB^2 - OF^2 , hence these values are equal to each other.

Thus B F 2 = 1 2 2 + 1 3 2 + 1 4 2 1 1 2 8 2 BF^2 = 12^2+13^2+14^2-11^2-8^2 so B F = 18 BF = 18 .

Same MEthod!! Upvoted

Department 8 - 5 years, 7 months ago

Applying Pythagorean theorem,
Δ s A E O a n d A F O , E O 2 + 8 2 = A O 2 = F O 2 + 1 2 2 . Δ s C D O a n d C E O , D O 2 + 1 1 2 = C O 2 = E O 2 + 1 3 2 . Δ s B F O a n d B D O , F O 2 + F B 2 = D O 2 = F O 2 + 1 4 2 . Adding the first & last terms of the three equations, and canceling same terms of both sides, 8 2 + 1 1 2 + F B 2 = 1 2 2 + 1 3 2 + 1 4 2 . F B = 1 2 2 + 1 3 2 + 1 4 2 8 2 1 1 2 . = 18. \Delta s\ AEO\ and\ AFO,\ \ \ \ \ EO^2+\ 8^2\ =\ AO^2\ =\ FO^2+12^2.\\ \Delta s\ CDO\ and\ CEO,\ \ \ \ \ DO^2+11^2\ =\ CO^2\ =\ EO^2+13^2.\\ \Delta s\ BFO\ and\ BDO,\ \ \ \ \ FO^2+FB^2\ =\ DO^2\ =\ FO^2+14^2.\\ \text{Adding the first \& last terms of the three equations, and canceling same terms of both sides,} \\ 8^2+11^2+FB^2= 12^2+13^2+14^2 .\ \ \implies FB=\sqrt{12^2+13^2+14^2 - 8^2 - 11^2.}\ =18.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...