Trisecting Hypotenuse

Geometry Level 2

.

29/3 10 9 28/3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Sung Moo Hong
Feb 24, 2014

By Phthagores Theorem A B 2 + A C 2 = B C 2 = 6 AB^{ 2 }+AC^{ 2 }=BC^{ 2 }=6 and, A P 2 = ( 2 / 3 × A B ) 2 + ( 1 / 3 × A C ) 2 AP^{ 2 }=(2/3\quad \times \quad AB)^{ 2 }+(1/3\quad \times \quad AC)^{ 2 } A Q 2 = ( 1 / 3 × A B ) 2 + ( 2 / 3 × A C ) 2 AQ^{ 2 }=(1/3\quad \times \quad AB)^{ 2 }+(2/3\quad \times \quad AC)^{ 2 } so, A B 2 + A P 2 + A Q 2 + A C 2 = 14 / 9 × ( A B 2 + A C 2 ) AB^{ 2 }+AP^{ 2 }+AQ^{ 2 }+AC^{ 2 }=14/9\quad \times \quad (AB^{ 2 }+AC^{ 2 }) = 14 / 9 × 6 = 28 / 3 = 14/9 \times 6 = 28/3

I did this too! It's a cool demonstration because it involves just Pythagoras' theorem and Thales' theorem

Pietro Pelliconi - 7 years, 3 months ago

Can you explain how you got AP^2 and AQ^2?

minimario minimario - 7 years, 3 months ago

Log in to reply

Sorry, a translation error. I meant the intercept theorem (http://en.m.wikipedia.org/wiki/Intercept_theorem) If you know that is easy. You have that the projection of AP and AQ on parallel lines to the sides of the tri are proportional to the segment of hypotenuse "above" them. For example AP has "above" 2/3 of the hypotenuse, so its projection on AB will be 2/3 of AB. you do this for all the sides and you get Sung's proof

Pietro Pelliconi - 7 years, 3 months ago

Log in to reply

Thanks for the clarification. It's a very beautiful solution!

Eloy Machado - 7 years, 3 months ago

well yeah, why i didn't think of that

Solehuddin Wahid - 7 years, 2 months ago
Ishan Tarunesh
Feb 23, 2014

First of all we get CQ = QP = PB with each of them equal to 6 3 = 2 3 \frac { \sqrt { 6 } }{ 3 } =\quad \frac { \sqrt { 2 } }{ \sqrt { 3 } } Now A C 2 + A B 2 = B C 2 ( B y P y t h a g o r e s T h e o r e m ) { AC }^{ 2 }\quad +\quad { AB }^{ 2 }\quad =\quad { BC }^{ 2 }\quad (By\quad Pythagores\quad Theorem) So A C 2 + A B 2 = 6 { AC }^{ 2 }\quad +\quad { AB }^{ 2 }\quad =\quad 6 Now we need some constructions. let X be the midpoint of BC. Join AX which is the median. Length of AX = BX = CX. So AX = 6 2 \frac { \sqrt { 6 } }{ 2 } A Q 2 = A X 2 + X Q 2 2 A X . X Q . C o s θ ( W h e r e θ = A X Q ) { AQ }^{ 2 }\quad =\quad { AX }^{ 2\quad }+\quad { XQ }^{ 2 }\quad -\quad 2AX.XQ.Cos\theta \quad \quad (Where\quad \theta \quad =\quad \angle AXQ) and A P 2 = A X 2 + X P 2 2 A X . X P . C o s ( π θ ) A P 2 = A X 2 + X P 2 + 2 A X . X P . C o s θ ( B e c a u s e C o s ( π θ ) = C o s θ ) { AP }^{ 2 }\quad =\quad { AX }^{ 2\quad }+\quad XP^{ 2 }\quad -\quad 2AX.XP.Cos(\pi -\theta )\\ { AP }^{ 2 }\quad =\quad { AX }^{ 2\quad }+\quad XP^{ 2 }\quad +\quad 2AX.XP.Cos\theta \quad \quad \quad \quad \quad (Because\quad Cos(\pi -\theta )\quad =\quad -Cos\theta ) Adding the two equations A P 2 + A Q 2 = 2 ( A X 2 + X P 2 ) A P 2 + A Q 2 = 2 [ 3 2 + ( 6 2 6 3 ) 2 ] A P 2 + A Q 2 = 10 3 { AP }^{ 2 }\quad +\quad { AQ }^{ 2 }\quad =\quad 2({ AX }^{ 2\quad }+\quad XP^{ 2 })\\ { AP }^{ 2 }\quad +\quad { AQ }^{ 2 }\quad =\quad 2[\frac { 3 }{ 2 } \quad +\quad { (\frac { \sqrt { 6 } }{ 2 } -\quad \frac { \sqrt { 6 } }{ 3 } ) }^{ 2 }]\\ { AP }^{ 2 }\quad +\quad { AQ }^{ 2 }\quad =\quad \frac { 10 }{ 3 } A P 2 + A Q 2 + A C 2 + A B 2 = 6 + 10 3 A P 2 + A Q 2 + A C 2 + A B 2 = 28 3 { AP }^{ 2 }\quad +\quad { AQ }^{ 2 }\quad +\quad { AC }^{ 2 }\quad +\quad { AB }^{ 2 }\quad =\quad 6\quad +\quad \frac { 10 }{ 3 } \\ { AP }^{ 2 }\quad +\quad { AQ }^{ 2 }\quad +\quad { AC }^{ 2 }\quad +\quad { AB }^{ 2 }\quad =\quad \frac { 28 }{ 3 }

You could have directly used Apollonius Theorem...

Amlan Mishra - 7 years, 3 months ago

yes, Thanks....

Ishan Tarunesh - 7 years, 3 months ago

Log in to reply

You could've solved this by just using Pythagoras Theorem and Thales' Theorem...

Jayesh Narayan - 7 years, 3 months ago

its got longer it can be cut short

Siddharth Singh - 7 years, 3 months ago

why AX is equal to BX and CX?

Mayank Gupta - 7 years, 2 months ago

ok i got it

Mayank Gupta - 7 years, 2 months ago

I took AC=0 . So AB=BC and AP=2/3 AB,AQ=1/3 AB and got result easily.

Vaibhav Agarwal
Feb 25, 2014

By Apollonius Theorem, A B 2 + A P 2 = 2 A Q 2 + P C 2 2 AB^{2} + AP^{2} = 2AQ^{2} +\frac{ PC^{2}}{2} and A C 2 + A Q 2 = 2 A P 2 + P C 2 2 AC^{2} + AQ^{2} = 2AP^{2} +\frac{ PC^{2}}{2}

Solving we get, A P 2 + A Q 2 = 10 3 AP^{2} + AQ^{2}=\frac{10}{3} and thus answer= 10 3 + 6 = 28 3 \frac{10}{3}+6=\boxed{\frac{28}{3}}

GOTTA ELABORATE IT

abhijit prekash - 6 years, 10 months ago

We know that B P = P Q = Q C = 6 3 BP=PQ=QC=\frac{\sqrt{6}}{3}

From the median line theorem (forgot the name)...

A P 2 + A C 2 = 2 ( A Q ) 2 + 2 ( 6 3 ) 2 AP^{2} + AC^{2} = 2(AQ)^2 + 2(\frac{\sqrt{6}}{3})^{2}

A B 2 + A Q 2 = 2 ( A P ) 2 + 2 ( 6 3 ) 2 AB^{2} + AQ^{2} = 2(AP)^2 + 2(\frac{\sqrt{6}}{3})^{2}

Sum these 2 together we get

A B 2 + A P 2 + A Q 2 + A C 2 = 2 ( A P ) 2 + 2 ( A Q ) 2 + 8 3 AB^{2} + AP^{2} + AQ^{2} + AC^{2} = 2(AP)^2 + 2(AQ)^2 + \frac{8}{3}

A B 2 + A C 2 = A P 2 + A Q 2 + 8 3 AB^{2} + AC^{2} = AP^{2} + AQ^{2} + \frac{8}{3}

Pythagoras;

6 = A P 2 + A Q 2 + 8 3 6 = AP^{2} + AQ^{2} + \frac{8}{3}

A P 2 + A Q 2 = 10 3 AP^{2} + AQ^{2} = \frac{10}{3}

Therefore, A B 2 + A P 2 + A Q 2 + A C 2 = 6 + 10 3 = 28 3 AB^{2} + AP^{2} + AQ^{2} + AC^{2} = 6 + \frac{10}{3} = \boxed{\frac{28}{3}} ~~~

I used the same method

Meenakshi Saini - 7 years, 3 months ago

Apollonius theorem.........!

Sagnik Dutta - 7 years, 3 months ago
Ashtamoorthy Ts
Mar 28, 2014

CB is the diameter of circumcircle of triangle ABC. D the centre of the circle and C-Q-D-P-B. It is obvious that: C Q = 1 3 6 C D = 1 3 6 C P = 2 3 6 C B = 6 D A = 1 2 6 \\CQ = \frac {1}{3} \sqrt 6\\CD=\frac{1}{3}\sqrt 6\\CP=\frac{2}{3}\sqrt 6\\CB=\sqrt 6\\DA=\frac{1}{2}\sqrt 6\\ A can be chosen to lie anywhere on the circumference since the only insistance is that CB is fixed; Let DA be perpendicular to DB A P 2 = A Q 2 = 6 4 + ( 1 2 6 1 3 6 ) 2 = 10 3 A B 2 + A C 2 + A Q 2 + A P 2 = 6 + 10 3 = 28 3 \\AP^2=AQ^2=\frac{6}{4}+(\frac{1}{2}\sqrt 6-\frac{1}{3}\sqrt 6)^2=\frac{10}{3}\\AB^2+AC^2+AQ^2+AP^2=6+\frac{10}{3}=\frac{28}{3}

Debmalya Mitra
Mar 17, 2014

Kumar Gupta, this problem was marvellous!!! Got the answer 28/3

Hanissa S
Mar 1, 2014

By Stewart's Theorem, A B 2 ( P C ) + A C 2 ( P B ) = B C ( A P 2 + P B P C ) AB^{2}(PC)+AC^{2}(PB)=BC(AP^{2}+PB * PC) A B 2 ( 2 6 3 ) + A C 2 ( 6 3 ) = 6 ( A P 2 + 12 9 ) AB^{2}\left(\frac{2\sqrt{6}}{3} \right)+AC^{2}\left(\frac{\sqrt{6}}{3} \right)=\sqrt{6}\left(AP^{2}+\frac{12}{9}\right) Which simplifies to 2 A B 2 + A C 2 = 3 A P 2 + 4 2AB^{2}+AC^{2}=3AP^{2}+4 Again, using Stewart's Theorem, we can get A B 2 + 2 A C 2 = 3 A Q 2 + 4 AB^{2}+2AC^{2}=3AQ^{2}+4 Adding both the equation gives 3 ( A B 2 + A C 2 ) = 3 ( A P 2 + A Q 2 ) + 8 3(AB^{2}+AC^{2})=3(AP^{2}+AQ^{2})+8 But since A B 2 + A C 2 = 6 AB^{2}+AC^{2}=6 , we get 3 ( A P 2 + A Q 2 ) + 8 = 18 3(AP^{2}+AQ^{2})+8=18 , A P 2 + A Q 2 = 10 3 AP^{2}+AQ^{2}=\frac{10}{3} Therefore, A B 2 + A P 2 + A Q 2 + A C 2 = 6 + 10 3 = 28 3 AB^{2}+AP^{2}+AQ^{2}+AC^{2}=6+\frac{10}{3}= \boxed{\frac{28}{3}}

Mine was like your's.

Eloy Machado - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...