Trivial expansion

Calculus Level pending

Find the coefficient of x 19 x^{19} in the expansion of Maclaurin series of f ( x ) = arctan ( sin ( π + x 2 ) ) \displaystyle f(x)=\arctan \left(\sin(\pi+x^2) \right) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 19, 2019

f ( x ) = tan 1 ( sin ( π + x 2 ) ) Note that sin ( π θ ) = sin θ = tan 1 ( sin ( x 2 ) ) = tan 1 ( sin x 2 ) By Maclaurin series = sin x 2 + sin 3 x 2 3 sin 5 x 2 5 + \begin{aligned} f(x) & = \tan^{-1} \left(\color{#3D99F6} \sin (\pi + x^2) \right) & \small \color{#3D99F6} \text{Note that }\sin (\pi - \theta) = \sin \theta \\ & = \tan^{-1} \left(\color{#3D99F6} \sin (- x^2) \right) \\ & = - \tan^{-1} \left(\sin x^2 \right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = - \sin x^2 + \frac {\sin^3 x^2}3 - \frac {\sin^5 x^2}5 + \cdots \end{aligned}

By Maclaurin series again, sin x 2 = x 2 x 6 3 ! + x 10 5 ! + \sin x^2 = x^2 - \dfrac {x^6}{3!} + \dfrac {x^{10}}{5!} + \cdots .. Since there is no odd powers of x x in sin x 2 \sin x^2 , there is no odd powers of x x in f ( x ) f(x) or all the coefficients of odd powers of x x including x 19 x^{19} are 0 \boxed 0 .

Chris Lewis
May 20, 2019

Two (basically equivalent) ways to do this:

  • whatever the expansion of arctan ( sin ( π + y ) ) \arctan \left( \sin(\pi+y) \right) is, when we substitute in y = x 2 y=x^2 , all of the terms will be in even powers of x x

  • the function is clearly even; so its Maclaurin series can have no odd powers

Either way, the coefficient of x 19 x^{19} is zero .

x 2 + x 6 2 3 x 10 8 + 83 x 14 240 8375 x 18 24192 + 147017 x 22 403200 1811857 x 26 4561920 + 193146402541 x 30 435891456000 78003909463 x 34 154983628800 + 25248145664891 x 38 43553562624000 + O ( x 41 ) -x^2+\frac{x^6}{2}-\frac{3 x^{10}}{8}+\frac{83 x^{14}}{240}-\frac{8375 x^{18}}{24192}+\frac{147017 x^{22}}{403200}-\frac{1811857 x^{26}}{4561920}+\frac{193146402541 x^{30}}{435891456000}-\frac{78003909463 x^{34}}{154983628800}+\frac{25248145664891 x^{38}}{43553562624000}+O\left(x^{41}\right) .

There is no x 19 x^{19} term in the series. Therefore, the coefficient is 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...