Trivial Fibonacci 2

If a m = n = 2 m ( 1 2 n 1 + k = 1 n 1 L k 2 n k ) \displaystyle a_{m} = \sum_{n=2}^{m} \left(\frac{1}{2^{n-1}} + \sum_{k=1}^{n-1} \frac{L_{k}}{2^{n-k}}\right) for m 2 m ≥ 2 , find ( m = 2 1 ( 2 + a m ) 2 ) 1 \displaystyle \left \lfloor \left(\sum_{m=2}^{\infty} \frac{1}{(2+a_{m})^2} \right)^{-1}\right \rfloor .

Notation: L n L_n denotes the n n th Lucas number , where L 0 = 2 L_0 = 2 , L 1 = 1 L_1=1 , and L n = L n 1 + L n 2 L_n = L_{n-1} + L_{n-2} for n 2 n \ge 2 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matt Janko
Feb 26, 2020

Let s n s_n denote the n n th summand of a m a_m : s 2 = 1 2 + L 1 2 = 1 , s_2 = \frac 12 + \frac {L_1}2 = 1, s 3 = 1 2 2 + L 1 2 2 + L 2 2 = 2 , s_3 = \frac 1{2^2} + \frac {L_1}{2^2} + \frac {L_2}2 = 2, s 4 = 1 2 3 + L 1 2 3 + L 2 2 2 + L 3 2 = 3 , s_4 = \frac 1{2^3} + \frac {L_1}{2^3} + \frac {L_2}{2^2} + \frac {L_3}2 = 3, s 5 = 1 2 4 + L 1 2 4 + L 2 2 3 + L 2 2 2 + L 3 2 = 5 , s_5 = \frac 1{2^4} + \frac {L_1}{2^4} + \frac {L_2}{2^3} + \frac {L_2}{2^2} + \frac {L_3}2 = 5, s 6 = 1 2 5 + L 1 2 5 + L 2 2 4 + L 2 2 3 + L 3 2 2 + L 4 2 = 8. s_6 = \frac 1{2^5} + \frac {L_1}{2^5} + \frac {L_2}{2^4} + \frac {L_2}{2^3} + \frac {L_3}{2^2} + \frac {L_4}2 = 8. Evidently, a m a_m is the sum of Fibonacci numbers. To verify this, notice that ( s n ) (s_n) satisfies the recurrence relation s n + 1 = 1 2 s n + L n 1 2 , s_{n + 1} = \frac 12 s_n + \frac {L_{n - 1}}2, or equivalently, 2 s n + 1 s n = L n 1 . 2s_{n + 1} - s_n = L_{n - 1}. This recurrence relation is also known to be satisfied by the Fibonacci numbers: 2 F n F n 1 = L n 1 , 2F_n - F_{n - 1} = L_{n - 1}, where F n F_n is the n n th Fibonacci number (with F 0 = F 1 = 1 F_0 = F_1 = 1 ). Since s 2 = F 1 s_2 = F_1 and s 3 = F 2 s_3 = F_2 , and since ( s n ) (s_n) and ( F n 1 ) (F_{n- 1}) follow the same recurrence relation, s n = F n 1 , s_n = F_{n - 1}, and thus a m = n = 2 m F n 1 = n = 1 m 1 F n . a_m = \sum_{n = 2}^m F_{n - 1} = \sum_{n = 1}^{m - 1} F_n. There is a simple way to compute sums of Fibonacci numbers: n = 1 m 1 F n = F m + 1 2. \sum_{n = 1}^{m - 1} F_n = F_{m + 1} - 2. This can be verified by induction: when m = 2 m = 2 , n = 1 m 1 F n = 1 = 3 2 = F m + 1 2 , \sum_{n = 1}^{m - 1} F_n = 1 = 3 - 2 = F_{m + 1} - 2, and for any m 2 m \geq 2 , n = 1 m 1 F n = F m + 1 2 n = 1 m F n = F m + F m + 1 2 = F m + 2 2. \sum_{n = 1}^{m - 1} F_n = F_{m + 1} - 2 \implies \sum_{n = 1}^{m} F_n = F_m + F_{m + 1} - 2 = F_{m + 2} - 2. This shows that a m = F m + 1 2 a_m = F_{m + 1} - 2 . Now consider m = 2 1 ( 2 + a m ) 2 = m = 2 1 ( F m + 1 ) 2 . \sum_{m = 2}^\infty \frac 1{(2 + a_m)^2} = \sum_{m = 2}^\infty \frac 1{(F_{m + 1})^2}. Since F m + 1 F_{m + 1} increases quickly, this series converges quickly. The first twenty terms of the series give a good approximation of its value: m = 2 1 ( F m + 1 ) 2 m = 2 21 1 ( F m + 1 ) 2 0.176 ( m = 2 1 ( F m + 1 ) 2 ) 1 5.671. \sum_{m = 2}^\infty \frac 1{(F_{m + 1})^2} \approx \sum_{m = 2}^{21} \frac 1{(F_{m + 1})^2} \approx 0.176 \implies \left( \sum_{m = 2}^\infty \frac 1{(F_{m + 1})^2} \right)^{-1} \approx 5.671. Therefore, the solution is 5.671 = 5 \lfloor 5.671 \rfloor = \boxed 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...