How many ordered set(s) of solution(s) ( x , y ) are there to the following equation:
x 2 + y 2 + 2 = ( x − 1 ) ( y − 1 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I solved it the same way
x 2 + y 2 + 2 = ( x − 1 ) ( y − 1 ) x 2 + y 2 + x + y − x y + 1 = 0 y 2 + y ( 1 − x ) + ( x 2 + x + 1 ) = 0 Discriminant Must be greater than or equal to 0 D ≥ 0 ⟹ ( 1 − x ) 2 − 4 ( x 2 + x + 1 ) ≥ 0 x 2 + 1 − 2 x − 4 x 2 − 4 x − 4 ≥ 0 − 3 x 2 − 6 x − 3 ≥ 0 ⟹ x 2 + 2 x + 1 ≤ 0 x = − 1 y 2 + 2 y + 1 = 0 ⟹ y = − 1 Only 1 real Solution exist for this equation ( − 1 , − 1 )
Nice solution did in this way only.
Problem Loading...
Note Loading...
Set Loading...
x 2 + y 2 + 2 = ( x − 1 ) ( y − 1 )
x 2 + y 2 = x y − x − y − 1
Multiplying both sides by 2
2 x 2 + 2 y 2 = 2 x y − 2 x − 2 y − 2
On rearranging this gives
( x + 1 ) 2 + ( y + 1 ) 2 + ( x − y ) 2 = 0
This is only possible when all three terms are zero simultaneously
thus x = y = − 1 is the only possible solution