Trivial?

Algebra Level 2

How many ordered set(s) of solution(s) ( x , y ) (x, y) are there to the following equation:

x 2 + y 2 + 2 = ( x 1 ) ( y 1 ) ? x^{2} + y^{2} + 2 = (x-1)(y-1)?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Nov 19, 2016

x 2 + y 2 + 2 = ( x 1 ) ( y 1 ) x^2+y^2+2=(x-1)(y-1)

x 2 + y 2 = x y x y 1 x^2+y^2=xy-x-y-1

Multiplying both sides by 2

2 x 2 + 2 y 2 = 2 x y 2 x 2 y 2 2x^2+2y^2=2xy-2x-2y-2

On rearranging this gives

( x + 1 ) 2 + ( y + 1 ) 2 + ( x y ) 2 = 0 (x+1)^2+(y+1)^2+(x-y)^2=0

This is only possible when all three terms are zero simultaneously

thus x = y = 1 x=y=-1 is the only possible solution

I solved it the same way

Nitin Kumar - 1 year, 3 months ago
Sabhrant Sachan
Jun 21, 2016

x 2 + y 2 + 2 = ( x 1 ) ( y 1 ) x 2 + y 2 + x + y x y + 1 = 0 y 2 + y ( 1 x ) + ( x 2 + x + 1 ) = 0 Discriminant Must be greater than or equal to 0 D 0 ( 1 x ) 2 4 ( x 2 + x + 1 ) 0 x 2 + 1 2 x 4 x 2 4 x 4 0 3 x 2 6 x 3 0 x 2 + 2 x + 1 0 x = 1 y 2 + 2 y + 1 = 0 y = 1 Only 1 real Solution exist for this equation ( 1 , 1 ) \quad x^2+y^2+2=(x-1)(y-1) \\ \quad x^2+y^2+x+y-xy+1 = 0 \\ \quad y^2+y(1-x)+(x^2+x+1)=0 \\ \quad \text{Discriminant Must be greater than or equal to } 0 \\ \quad D\ge 0 \implies (1-x)^2-4(x^2+x+1)\ge0 \\ \quad x^2+1-2x-4x^2-4x-4 \ge 0 \\ \quad -3x^2-6x-3 \ge 0 \implies x^2+2x+1\le 0 \\ \quad \boxed{ x = -1 } \\ \quad y^2+2y+1=0 \implies \boxed{ y = -1} \\ \quad \text{Only 1 real Solution exist for this equation } \boxed{(-1,-1)}

Nice solution did in this way only.

D K - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...