Trouble sum #1

Algebra Level 5

1 a < b < c 1 2 a 3 b 5 c = 1 A \large \underbrace{\sum \sum\sum}_{1\le a<b<c} \frac{1}{2^a3^b5^c}=\frac{1}{A}

Find the value of A A .


Try part 2 here .


The answer is 1624.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2018

S = 1 a < b < c 1 2 a 3 b 5 c = a = 1 1 2 a b = a + 1 1 3 b c = b + 1 1 5 c = a = 1 1 2 a b = a + 1 1 3 b 1 5 b + 1 1 1 1 5 = a = 1 1 2 a b = a + 1 1 3 b 1 5 b 1 4 = 1 4 a = 1 1 2 a b = a + 1 1 1 5 b = 1 4 a = 1 1 2 a 1 1 5 a + 1 15 14 = 1 56 a = 1 1 3 0 a = 1 56 1 30 30 29 = 1 1624 \begin{aligned} S & = \underbrace{\sum \sum \sum}_{1\le a < b < c} \frac 1{2^a3^b5^c} \\ & = \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{3^b} \sum_{c=b+1}^\infty \frac 1{5^c} \\ & = \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{3^b} \cdot \frac 1{5^{b+1}} \frac 1{1-\frac 15} \\ & = \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{3^b} \cdot \frac 1{5^b} \cdot \frac 14 \\ & = \frac 14 \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{15^b} \\ & = \frac 14 \sum_{a=1}^\infty \frac 1{2^a} \frac 1{15^{a+1}} \cdot \frac {15}{14} \\ & = \frac 1{56} \sum_{a=1}^\infty \frac 1{30^a} \\ & = \frac 1{56} \cdot \frac 1{30} \cdot \frac {30}{29} \\ & = \frac 1{1624} \end{aligned}

Therefore, A = 1624 A = \boxed{1624} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...