Troublesome Limits!#1

Calculus Level pending

Evaluate the following limits, if it exists.

lim x 0 x tan 2 x 2 x tan x ( 1 cos 2 x ) 2 \large \lim_{x \to 0} \frac{x\tan2x - 2x\tan x}{(1-\cos2x)^2}

Does not exist 1 None of these 0 1/2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using the identities tan ( 2 x ) = 2 tan ( x ) 1 tan 2 ( x ) \tan(2x) = \dfrac{2\tan(x)}{1 - \tan^{2}(x)} and cos ( 2 x ) = 1 2 sin 2 ( x ) \cos(2x) = 1 - 2\sin^{2}(x) we have that

x tan ( 2 x ) 2 x tan ( x ) ( 1 cos ( 2 x ) ) 2 = 2 x tan ( x ) ( 1 1 tan 2 ( x ) 1 ) 4 sin 4 ( x ) = x tan ( x ) × tan 2 ( x ) 1 tan 2 ( x ) 2 sin 4 ( x ) = \dfrac{x\tan(2x) - 2x\tan(x)}{(1 - \cos(2x))^{2}} = \dfrac{2x\tan(x)\left(\dfrac{1}{1 - \tan^{2}(x)} - 1\right)}{4\sin^{4}(x)} = \dfrac{x\tan(x) \times \dfrac{\tan^{2}(x)}{1 - \tan^{2}(x)}}{2\sin^{4}(x)} =

1 2 × x sin ( x ) × 1 cos 3 ( x ) ( 1 tan 2 ( x ) ) \dfrac{1}{2} \times \dfrac{x}{\sin(x)} \times \dfrac{1}{\cos^{3}(x)(1 - \tan^{2}(x))} , since tan ( x ) = sin ( x ) cos ( x ) \tan(x) = \dfrac{\sin(x)}{\cos(x)} .

Then since lim x 0 x sin ( x ) = 1 \displaystyle\lim_{x \to 0} \dfrac{x}{\sin(x)} = 1 the given limit is equal to 1 2 \boxed{\dfrac{1}{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...